Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1512.03965
Cited By
The Power of Depth for Feedforward Neural Networks
12 December 2015
Ronen Eldan
Ohad Shamir
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Power of Depth for Feedforward Neural Networks"
50 / 367 papers shown
Title
Neural networks with linear threshold activations: structure and algorithms
Sammy Khalife
Hongyu Cheng
A. Basu
42
14
0
15 Nov 2021
Theoretical Exploration of Flexible Transmitter Model
Jin-Hui Wu
Shao-Qun Zhang
Yuan Jiang
Zhiping Zhou
44
3
0
11 Nov 2021
Scaffolding Sets
M. Burhanpurkar
Zhun Deng
Cynthia Dwork
Linjun Zhang
41
9
0
04 Nov 2021
Fourier Neural Networks for Function Approximation
R. Subhash
K. Yaswanth
28
1
0
21 Oct 2021
Expressivity of Neural Networks via Chaotic Itineraries beyond Sharkovsky's Theorem
Clayton Sanford
Vaggos Chatziafratis
16
1
0
19 Oct 2021
Data-driven approaches for predicting spread of infectious diseases through DINNs: Disease Informed Neural Networks
Sagi Shaier
M. Raissi
P. Seshaiyer
PINN
AI4CE
21
25
0
11 Oct 2021
On the Optimal Memorization Power of ReLU Neural Networks
Gal Vardi
Gilad Yehudai
Ohad Shamir
24
31
0
07 Oct 2021
Arbitrary-Depth Universal Approximation Theorems for Operator Neural Networks
Annan Yu
Chloe Becquey
Diana Halikias
Matthew Esmaili Mallory
Alex Townsend
59
8
0
23 Sep 2021
Dive into Layers: Neural Network Capacity Bounding using Algebraic Geometry
Ji Yang
Lu Sang
Daniel Cremers
14
1
0
03 Sep 2021
Adaptive Group Lasso Neural Network Models for Functions of Few Variables and Time-Dependent Data
L. Ho
Nicholas Richardson
Giang Tran
20
3
0
24 Aug 2021
The staircase property: How hierarchical structure can guide deep learning
Emmanuel Abbe
Enric Boix-Adserà
Matthew Brennan
Guy Bresler
Dheeraj M. Nagaraj
17
48
0
24 Aug 2021
Towards Understanding Theoretical Advantages of Complex-Reaction Networks
Shao-Qun Zhang
Gaoxin Wei
Zhi-Hua Zhou
23
17
0
15 Aug 2021
Neural Network Approximation of Refinable Functions
Ingrid Daubechies
Ronald A. DeVore
Nadav Dym
Shira Faigenbaum-Golovin
S. Kovalsky
Kung-Chin Lin
Josiah Park
G. Petrova
B. Sober
46
14
0
28 Jul 2021
Statistically Meaningful Approximation: a Case Study on Approximating Turing Machines with Transformers
Colin Wei
Yining Chen
Tengyu Ma
21
88
0
28 Jul 2021
High-Dimensional Distribution Generation Through Deep Neural Networks
Dmytro Perekrestenko
Léandre Eberhard
Helmut Bölcskei
OOD
38
6
0
26 Jul 2021
Estimation of a regression function on a manifold by fully connected deep neural networks
Michael Kohler
S. Langer
U. Reif
22
4
0
20 Jul 2021
Privacy Vulnerability of Split Computing to Data-Free Model Inversion Attacks
Xin Dong
Hongxu Yin
J. Álvarez
Jan Kautz
Pavlo Molchanov
H. T. Kung
MIACV
32
8
0
13 Jul 2021
A Theory-Driven Self-Labeling Refinement Method for Contrastive Representation Learning
Pan Zhou
Caiming Xiong
Xiaotong Yuan
Guosheng Lin
SSL
22
12
0
28 Jun 2021
Bayesian Deep Learning Hyperparameter Search for Robust Function Mapping to Polynomials with Noise
Nidhin Harilal
Udit Bhatia
A. Ganguly
OOD
22
0
0
23 Jun 2021
Neural Optimization Kernel: Towards Robust Deep Learning
Yueming Lyu
Ivor Tsang
22
1
0
11 Jun 2021
Separation Results between Fixed-Kernel and Feature-Learning Probability Metrics
Carles Domingo-Enrich
Youssef Mroueh
27
1
0
10 Jun 2021
Towards Lower Bounds on the Depth of ReLU Neural Networks
Christoph Hertrich
A. Basu
M. D. Summa
M. Skutella
34
42
0
31 May 2021
MAGI-X: Manifold-Constrained Gaussian Process Inference for Unknown System Dynamics
Chaofan Huang
Simin Ma
Shihao Yang
27
0
0
27 May 2021
Livewired Neural Networks: Making Neurons That Fire Together Wire Together
Thomas Schumacher
30
4
0
17 May 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
177
247
0
01 May 2021
Sharp bounds for the number of regions of maxout networks and vertices of Minkowski sums
Guido Montúfar
Yue Ren
Leon Zhang
20
39
0
16 Apr 2021
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic Error Bounds with Polynomial Prefactors
Yuling Jiao
Guohao Shen
Yuanyuan Lin
Jian Huang
36
50
0
14 Apr 2021
CovNet: Covariance Networks for Functional Data on Multidimensional Domains
Soham Sarkar
V. Panaretos
22
6
0
11 Apr 2021
XY Neural Networks
N. Stroev
N. Berloff
20
0
0
31 Mar 2021
PAC-learning gains of Turing machines over circuits and neural networks
Brieuc Pinon
Raphaël Jungers
Jean-Charles Delvenne
AI4CE
21
1
0
23 Mar 2021
The Low-Rank Simplicity Bias in Deep Networks
Minyoung Huh
H. Mobahi
Richard Y. Zhang
Brian Cheung
Pulkit Agrawal
Phillip Isola
27
109
0
18 Mar 2021
Deep ReLU Networks Preserve Expected Length
Boris Hanin
Ryan Jeong
David Rolnick
29
14
0
21 Feb 2021
Understanding algorithmic collusion with experience replay
Bing Han
29
2
0
18 Feb 2021
ReLU Neural Networks of Polynomial Size for Exact Maximum Flow Computation
Christoph Hertrich
Leon Sering
37
10
0
12 Feb 2021
Min-Max-Plus Neural Networks
Ye Luo
Shi Fan
29
3
0
12 Feb 2021
From Sampling to Optimization on Discrete Domains with Applications to Determinant Maximization
Nima Anari
T. Vuong
24
9
0
10 Feb 2021
On the Approximation Power of Two-Layer Networks of Random ReLUs
Daniel J. Hsu
Clayton Sanford
Rocco A. Servedio
Emmanouil-Vasileios Vlatakis-Gkaragkounis
8
25
0
03 Feb 2021
Depth separation beyond radial functions
Luca Venturi
Samy Jelassi
Tristan Ozuch
Joan Bruna
17
15
0
02 Feb 2021
The Connection Between Approximation, Depth Separation and Learnability in Neural Networks
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
21
20
0
31 Jan 2021
Size and Depth Separation in Approximating Benign Functions with Neural Networks
Gal Vardi
Daniel Reichman
T. Pitassi
Ohad Shamir
28
7
0
30 Jan 2021
A simple geometric proof for the benefit of depth in ReLU networks
Asaf Amrami
Yoav Goldberg
30
1
0
18 Jan 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
Rong Jin
39
3
0
12 Jan 2021
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
144
663
0
28 Dec 2020
Frequency-compensated PINNs for Fluid-dynamic Design Problems
Tongtao Zhang
Biswadip Dey
P. Kakkar
A. Dasgupta
Amit Chakraborty
PINN
AI4CE
24
8
0
03 Nov 2020
On the rate of convergence of a deep recurrent neural network estimate in a regression problem with dependent data
Michael Kohler
A. Krzyżak
8
12
0
31 Oct 2020
Provable Memorization via Deep Neural Networks using Sub-linear Parameters
Sejun Park
Jaeho Lee
Chulhee Yun
Jinwoo Shin
FedML
MDE
25
36
0
26 Oct 2020
On the Number of Linear Functions Composing Deep Neural Network: Towards a Refined Definition of Neural Networks Complexity
Yuuki Takai
Akiyoshi Sannai
Matthieu Cordonnier
80
4
0
23 Oct 2020
Towards Reflectivity profile inversion through Artificial Neural Networks
J. M. Carmona Loaiza
Zamaan Raza
21
11
0
15 Oct 2020
Depth-Width Trade-offs for Neural Networks via Topological Entropy
Kaifeng Bu
Yaobo Zhang
Qingxian Luo
13
8
0
15 Oct 2020
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
34
888
0
14 Oct 2020
Previous
1
2
3
4
5
6
7
8
Next