ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.02011
  4. Cited By
How to Discount Deep Reinforcement Learning: Towards New Dynamic
  Strategies

How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies

7 December 2015
Vincent François-Lavet
R. Fonteneau
D. Ernst
ArXivPDFHTML

Papers citing "How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies"

15 / 15 papers shown
Title
On shallow planning under partial observability
On shallow planning under partial observability
Randy Lefebvre
Audrey Durand
OffRL
39
0
0
22 Jul 2024
Bigger, Regularized, Optimistic: scaling for compute and
  sample-efficient continuous control
Bigger, Regularized, Optimistic: scaling for compute and sample-efficient continuous control
Michal Nauman
M. Ostaszewski
Krzysztof Jankowski
Piotr Milo's
Marek Cygan
OffRL
45
16
0
25 May 2024
Hard-Thresholding Meets Evolution Strategies in Reinforcement Learning
Hard-Thresholding Meets Evolution Strategies in Reinforcement Learning
Chengqian Gao
William de Vazelhes
Hualin Zhang
Bin Gu
Zhiqiang Xu
54
0
0
02 May 2024
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
J. Obando-Ceron
Rameswar Panda
Marc G. Bellemare
Rishabh Agarwal
Pablo Samuel Castro
OffRL
54
82
0
30 May 2023
Truncating Trajectories in Monte Carlo Reinforcement Learning
Truncating Trajectories in Monte Carlo Reinforcement Learning
Riccardo Poiani
Alberto Maria Metelli
Marcello Restelli
24
2
0
07 May 2023
Factors of Influence of the Overestimation Bias of Q-Learning
Factors of Influence of the Overestimation Bias of Q-Learning
Julius Wagenbach
M. Sabatelli
15
1
0
11 Oct 2022
Optimizing the Long-Term Behaviour of Deep Reinforcement Learning for
  Pushing and Grasping
Optimizing the Long-Term Behaviour of Deep Reinforcement Learning for Pushing and Grasping
Rodrigo Chau
33
0
0
07 Apr 2022
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative
  Survey
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey
Amjad Yousef Majid
Serge Saaybi
Tomas van Rietbergen
Vincent François-Lavet
R. V. Prasad
Chris Verhoeven
OffRL
60
54
0
28 Sep 2021
Theoretical Guarantees of Fictitious Discount Algorithms for Episodic
  Reinforcement Learning and Global Convergence of Policy Gradient Methods
Theoretical Guarantees of Fictitious Discount Algorithms for Episodic Reinforcement Learning and Global Convergence of Policy Gradient Methods
Xin Guo
Anran Hu
Junzi Zhang
OffRL
25
6
0
13 Sep 2021
Taylor Expansion of Discount Factors
Taylor Expansion of Discount Factors
Yunhao Tang
Mark Rowland
Rémi Munos
Michal Valko
OffRL
29
5
0
11 Jun 2021
Automatic Curriculum Learning For Deep RL: A Short Survey
Automatic Curriculum Learning For Deep RL: A Short Survey
Rémy Portelas
Cédric Colas
Lilian Weng
Katja Hofmann
Pierre-Yves Oudeyer
ODL
19
167
0
10 Mar 2020
Personalized HeartSteps: A Reinforcement Learning Algorithm for
  Optimizing Physical Activity
Personalized HeartSteps: A Reinforcement Learning Algorithm for Optimizing Physical Activity
Peng Liao
Kristjan Greenewald
P. Klasnja
S. Murphy
17
83
0
08 Sep 2019
Hyperbolic Discounting and Learning over Multiple Horizons
Hyperbolic Discounting and Learning over Multiple Horizons
W. Fedus
Carles Gelada
Yoshua Bengio
Marc G. Bellemare
Hugo Larochelle
29
105
0
19 Feb 2019
Fast Efficient Hyperparameter Tuning for Policy Gradients
Fast Efficient Hyperparameter Tuning for Policy Gradients
Supratik Paul
Vitaly Kurin
Shimon Whiteson
22
32
0
18 Feb 2019
Online Meta-learning by Parallel Algorithm Competition
Online Meta-learning by Parallel Algorithm Competition
Stefan Elfwing
E. Uchibe
Kenji Doya
23
22
0
24 Feb 2017
1