Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.07263
Cited By
Input Sparsity Time Low-Rank Approximation via Ridge Leverage Score Sampling
23 November 2015
Michael B. Cohen
Cameron Musco
Christopher Musco
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Input Sparsity Time Low-Rank Approximation via Ridge Leverage Score Sampling"
24 / 24 papers shown
Title
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Christopher Musco
R. Teal Witter
FAtt
FedML
TDI
55
2
0
02 Oct 2024
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Michal Dereziñski
Christopher Musco
Jiaming Yang
45
2
0
09 May 2024
HERTA: A High-Efficiency and Rigorous Training Algorithm for Unfolded Graph Neural Networks
Yongyi Yang
Jiaming Yang
Wei Hu
Michal Dereziñski
48
0
0
26 Mar 2024
Learning the Positions in CountSketch
Yi Li
Honghao Lin
Simin Liu
A. Vakilian
David P. Woodruff
29
18
0
11 Jun 2023
Provable Data Subset Selection For Efficient Neural Network Training
M. Tukan
Samson Zhou
Alaa Maalouf
Daniela Rus
Vladimir Braverman
Dan Feldman
MLT
25
9
0
09 Mar 2023
Coresets for Vertical Federated Learning: Regularized Linear Regression and
K
K
K
-Means Clustering
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
FedML
44
9
0
26 Oct 2022
ALLWAS: Active Learning on Language models in WASserstein space
Anson Bastos
Manohar Kaul
MedIm
18
1
0
03 Sep 2021
Adversarial Robustness of Streaming Algorithms through Importance Sampling
Vladimir Braverman
Avinatan Hassidim
Yossi Matias
Mariano Schain
Sandeep Silwal
Samson Zhou
AAML
OOD
24
38
0
28 Jun 2021
Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra
Nadiia Chepurko
K. Clarkson
L. Horesh
Honghao Lin
David P. Woodruff
21
24
0
09 Nov 2020
EigenGame: PCA as a Nash Equilibrium
I. Gemp
Brian McWilliams
Claire Vernade
T. Graepel
21
46
0
01 Oct 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
21
42
0
21 Sep 2020
Efficient computation and analysis of distributional Shapley values
Yongchan Kwon
Manuel A. Rivas
James Zou
FAtt
TDI
19
61
0
02 Jul 2020
The Statistical Cost of Robust Kernel Hyperparameter Tuning
R. A. Meyer
Christopher Musco
16
2
0
14 Jun 2020
Effective Dimension Adaptive Sketching Methods for Faster Regularized Least-Squares Optimization
Jonathan Lacotte
Mert Pilanci
35
23
0
10 Jun 2020
An Improved Cutting Plane Method for Convex Optimization, Convex-Concave Games and its Applications
Haotian Jiang
Y. Lee
Zhao Song
Sam Chiu-wai Wong
14
106
0
08 Apr 2020
Tight Sensitivity Bounds For Smaller Coresets
Alaa Maalouf
Adiel Statman
Dan Feldman
32
18
0
02 Jul 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
27
18
0
22 Feb 2019
Randomized Iterative Algorithms for Fisher Discriminant Analysis
Agniva Chowdhury
Jiasen Yang
P. Drineas
22
8
0
09 Sep 2018
On Coresets for Logistic Regression
Alexander Munteanu
Chris Schwiegelshohn
C. Sohler
David P. Woodruff
30
108
0
22 May 2018
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
17
156
0
26 Apr 2018
Distributed Adaptive Sampling for Kernel Matrix Approximation
Daniele Calandriello
A. Lazaric
Michal Valko
30
23
0
27 Mar 2018
Is Input Sparsity Time Possible for Kernel Low-Rank Approximation?
Cameron Musco
David P. Woodruff
31
13
0
05 Nov 2017
Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds
Shusen Wang
Alex Gittens
Michael W. Mahoney
30
127
0
09 Jun 2017
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
86
277
0
09 Aug 2012
1