Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.06481
Cited By
Variance Reduction in SGD by Distributed Importance Sampling
20 November 2015
Guillaume Alain
Alex Lamb
Chinnadhurai Sankar
Aaron Courville
Yoshua Bengio
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variance Reduction in SGD by Distributed Importance Sampling"
34 / 34 papers shown
Title
Multiple Importance Sampling for Stochastic Gradient Estimation
Corentin Salaün
Xingchang Huang
Iliyan Georgiev
Niloy J. Mitra
Gurprit Singh
32
1
0
22 Jul 2024
Diversified Batch Selection for Training Acceleration
Feng Hong
Yueming Lyu
Jiangchao Yao
Ya Zhang
Ivor W. Tsang
Yanfeng Wang
42
4
0
07 Jun 2024
A Negative Result on Gradient Matching for Selective Backprop
Lukas Balles
Cédric Archambeau
Giovanni Zappella
37
0
0
08 Dec 2023
No Train No Gain: Revisiting Efficient Training Algorithms For Transformer-based Language Models
Jean Kaddour
Oscar Key
Piotr Nawrot
Pasquale Minervini
Matt J. Kusner
22
41
0
12 Jul 2023
Personalized Privacy Amplification via Importance Sampling
Dominik Fay
Sebastian Mair
Jens Sjölund
60
0
0
05 Jul 2023
AdaSelection: Accelerating Deep Learning Training through Data Subsampling
Minghe Zhang
Chaosheng Dong
Jinmiao Fu
Tianchen Zhou
Jia Liang
...
Bo Liu
Michinari Momma
Bryan Wang
Yan Gao
Yi Sun
35
3
0
19 Jun 2023
GaitMPL: Gait Recognition with Memory-Augmented Progressive Learning
Huanzhang Dou
Pengyi Zhang
Yuhan Zhao
Lin Dong
Zequn Qin
Xi Li
CVBM
VLM
33
24
0
06 Jun 2023
NLU on Data Diets: Dynamic Data Subset Selection for NLP Classification Tasks
Jean-Michel Attendu
Jean-Philippe Corbeil
38
15
0
05 Jun 2023
Informative Sample-Aware Proxy for Deep Metric Learning
Aoyu Li
Ikuro Sato
Kohta Ishikawa
Rei Kawakami
Rio Yokota
24
1
0
18 Nov 2022
Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models
Ethan Pickering
T. Sapsis
24
6
0
27 Aug 2022
Prioritized Training on Points that are Learnable, Worth Learning, and Not Yet Learnt
Sören Mindermann
J. Brauner
Muhammed Razzak
Mrinank Sharma
Andreas Kirsch
...
Benedikt Höltgen
Aidan Gomez
Adrien Morisot
Sebastian Farquhar
Y. Gal
62
149
0
14 Jun 2022
DELTA: Diverse Client Sampling for Fasting Federated Learning
Lung-Chuang Wang
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
23
22
0
27 May 2022
Tricks and Plugins to GBM on Images and Sequences
Biyi Fang
J. Utke
Diego Klabjan
25
0
0
01 Mar 2022
Characterizing & Finding Good Data Orderings for Fast Convergence of Sequential Gradient Methods
Amirkeivan Mohtashami
Sebastian U. Stich
Martin Jaggi
26
13
0
03 Feb 2022
FedBalancer: Data and Pace Control for Efficient Federated Learning on Heterogeneous Clients
Jaemin Shin
Yuanchun Li
Yunxin Liu
Sung-Ju Lee
FedML
17
74
0
05 Jan 2022
Curriculum generation using Autoencoder based continuous optimization
Dipankar Sarkar
Mukur Gupta
22
0
0
16 Jun 2021
Dynamic Gradient Aggregation for Federated Domain Adaptation
Dimitrios Dimitriadis
K. Kumatani
R. Gmyr
Yashesh Gaur
Sefik Emre Eskimez
FedML
26
5
0
14 Jun 2021
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
Chaosheng Dong
Xiaojie Jin
Weihao Gao
Yijia Wang
Hongyi Zhang
Xiang Wu
Jianchao Yang
Xiaobing Liu
28
5
0
27 Apr 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
223
0
26 Apr 2021
Variance Reduced Training with Stratified Sampling for Forecasting Models
Yucheng Lu
Youngsuk Park
Lifan Chen
Bernie Wang
Christopher De Sa
Dean Phillips Foster
AI4TS
38
17
0
02 Mar 2021
Federated Learning under Importance Sampling
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
18
52
0
14 Dec 2020
Optimal Importance Sampling for Federated Learning
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
40
46
0
26 Oct 2020
A Survey on Curriculum Learning
Xin Wang
Yudong Chen
Wenwu Zhu
SyDa
32
22
0
25 Oct 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
22
109
0
10 Aug 2020
Federated Transfer Learning with Dynamic Gradient Aggregation
Dimitrios Dimitriadis
K. Kumatani
R. Gmyr
Yashesh Gaur
Sefik Emre Eskimez
FedML
24
15
0
06 Aug 2020
Adaptive Task Sampling for Meta-Learning
Chenghao Liu
Zhihao Wang
Doyen Sahoo
Yuan Fang
Kun Zhang
Guosheng Lin
30
54
0
17 Jul 2020
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
Lee Xiong
Chenyan Xiong
Ye Li
Kwok-Fung Tang
Jialin Liu
Paul N. Bennett
Junaid Ahmed
Arnold Overwijk
11
1,180
0
01 Jul 2020
Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization
Kenji Kawaguchi
Haihao Lu
ODL
22
62
0
09 Jul 2019
Submodular Batch Selection for Training Deep Neural Networks
K. J. Joseph
R. VamshiTeja
Krishnakant Singh
V. Balasubramanian
11
23
0
20 Jun 2019
Auto-Vectorizing TensorFlow Graphs: Jacobians, Auto-Batching And Beyond
Ashish Agarwal
Igor Ganichev
27
8
0
08 Mar 2019
Distributed Prioritized Experience Replay
Dan Horgan
John Quan
David Budden
Gabriel Barth-Maron
Matteo Hessel
H. V. Hasselt
David Silver
86
731
0
02 Mar 2018
Safe Adaptive Importance Sampling
Sebastian U. Stich
Anant Raj
Martin Jaggi
29
54
0
07 Nov 2017
Online Batch Selection for Faster Training of Neural Networks
I. Loshchilov
Frank Hutter
ODL
37
296
0
19 Nov 2015
Efficient Per-Example Gradient Computations
Ian Goodfellow
186
74
0
07 Oct 2015
1