Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.06348
Cited By
How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?
19 November 2015
Junghwan Cho
Kyewook Lee
Ellie Shin
G. Choy
Synho Do
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?"
28 / 28 papers shown
Title
Shape Modeling of Longitudinal Medical Images: From Diffeomorphic Metric Mapping to Deep Learning
Edwin Tay
Nazli Tümer
Amir A. Zadpoor
MedIm
52
0
0
27 Mar 2025
Lung-DDPM: Semantic Layout-guided Diffusion Models for Thoracic CT Image Synthesis
Yifan Jiang
Yannick Lemaréchal
Josée Bafaro
Jessica Abi-Rjeile
Philippe Joubert
Philippe Després
Venkata Manem
MedIm
DiffM
44
1
0
24 Feb 2025
How much data do I need? A case study on medical data
Ayse Betul Cengiz
A. Mcgough
19
2
0
26 Nov 2023
Pretrained ViTs Yield Versatile Representations For Medical Images
Christos Matsoukas
Johan Fredin Haslum
Magnus P Soderberg
Kevin Smith
MedIm
ViT
27
11
0
13 Mar 2023
Diffusion Probabilistic Models beat GANs on Medical Images
Gustav Muller-Franzes
J. Niehues
Firas Khader
Soroosh Tayebi Arasteh
Christoph Haarburger
...
Tian Wang
T. Han
S. Nebelung
Jakob Nikolas Kather
Daniel Truhn
DiffM
MedIm
27
91
0
14 Dec 2022
Navigating causal deep learning
Jeroen Berrevoets
Krzysztof Kacprzyk
Zhaozhi Qian
M. Schaar
CML
41
2
0
01 Dec 2022
Does Deep Learning REALLY Outperform Non-deep Machine Learning for Clinical Prediction on Physiological Time Series?
Ke Liao
Wei Wang
A. Elibol
L. Meng
Xu Zhao
N. Chong
OOD
38
1
0
11 Nov 2022
How many radiographs are needed to re-train a deep learning system for object detection?
Raniere Silva
Khizar Hayat
Christopher Riggs
M. Doube
MedIm
26
0
0
17 Oct 2022
Revisiting Neural Scaling Laws in Language and Vision
Ibrahim M. Alabdulmohsin
Behnam Neyshabur
Xiaohua Zhai
159
102
0
13 Sep 2022
Lirot.ai: A Novel Platform for Crowd-Sourcing Retinal Image Segmentations
Jonathan Fhima
Jan Van Eijgen
Moti Freiman
Ingeborg Stalmans
Joachim A. Behar
24
4
0
22 Aug 2022
Maintaining Performance with Less Data
Dominic Sanderson
Tatiana Kalgonova
33
1
0
03 Aug 2022
A Review of Published Machine Learning Natural Language Processing Applications for Protocolling Radiology Imaging
Nihal Raju
Michael Woodburn
S. Kachel
Jack O’Shaughnessy
Laurence Sorace
Natalie Yang
Ruth P. Lim
LM&MA
8
1
0
23 Jun 2022
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
29
2
0
06 Jun 2022
Deep Learning for Ultrasound Speed-of-Sound Reconstruction: Impacts of Training Data Diversity on Stability and Robustness
Farnaz Khun Jush
M. Biele
P. Dueppenbecker
Andreas Maier
OOD
22
14
0
01 Feb 2022
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
F. Mohr
Jan N. van Rijn
41
53
0
28 Jan 2022
Human Age Estimation from Gene Expression Data using Artificial Neural Networks
S. Mohamadi
Gianfranco Doretto
Nasser M. Nasrabadi
Donald Adjeroh
14
5
0
04 Nov 2021
Challenges for machine learning in clinical translation of big data imaging studies
Nicola K. Dinsdale
Emma Bluemke
V. Sundaresan
M. Jenkinson
Stephen Smith
Ana I. L. Namburete
AI4CE
37
41
0
07 Jul 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
32
1
0
05 Jul 2021
*-CFQ: Analyzing the Scalability of Machine Learning on a Compositional Task
Dmitry Tsarkov
Tibor Tihon
Nathan Scales
Nikola Momchev
Danila Sinopalnikov
Nathanael Scharli
18
17
0
15 Dec 2020
How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring
S. Shahinfar
P. Meek
G. Falzon
22
151
0
16 Oct 2020
Image Deconvolution via Noise-Tolerant Self-Supervised Inversion
H. Kobayashi
A. Solak
Joshua D. Batson
Loic A. Royer
16
13
0
11 Jun 2020
Med-BERT: pre-trained contextualized embeddings on large-scale structured electronic health records for disease prediction
L. Rasmy
Yang Xiang
Z. Xie
Cui Tao
Degui Zhi
AI4MH
LM&MA
24
656
0
22 May 2020
Machine Learning Techniques for Biomedical Image Segmentation: An Overview of Technical Aspects and Introduction to State-of-Art Applications
Hyunseok Seo
M. B. Khuzani
V. Vasudevan
Charles Huang
Hongyi Ren
Ruoxiu Xiao
Xiao Jia
Lei Xing
VLM
24
218
0
06 Nov 2019
A Constructive Prediction of the Generalization Error Across Scales
Jonathan S. Rosenfeld
Amir Rosenfeld
Yonatan Belinkov
Nir Shavit
36
205
0
27 Sep 2019
SUSAN: Segment Unannotated image Structure using Adversarial Network
Fang Liu
GAN
MedIm
42
56
0
03 Dec 2018
Improving brain computer interface performance by data augmentation with conditional Deep Convolutional Generative Adversarial Networks
Qiqi Zhang
Yating Liu
GAN
OOD
30
58
0
19 Jun 2018
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
38
1,387
0
02 Mar 2017
Deep Learning in Bioinformatics
Seonwoo Min
Byunghan Lee
Sungroh Yoon
AI4CE
3DV
36
1,351
0
21 Mar 2016
1