Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.05077
Cited By
Diversity Networks: Neural Network Compression Using Determinantal Point Processes
16 November 2015
Zelda E. Mariet
S. Sra
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Diversity Networks: Neural Network Compression Using Determinantal Point Processes"
20 / 20 papers shown
Title
Pruning Very Deep Neural Network Channels for Efficient Inference
Yihui He
35
1
0
14 Nov 2022
Data-Efficient Structured Pruning via Submodular Optimization
Marwa El Halabi
Suraj Srinivas
Simon Lacoste-Julien
20
18
0
09 Mar 2022
The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another in Neural Networks
Xin Yu
Thiago Serra
Srikumar Ramalingam
Shandian Zhe
42
48
0
09 Mar 2022
Don't Be So Dense: Sparse-to-Sparse GAN Training Without Sacrificing Performance
Shiwei Liu
Yuesong Tian
Tianlong Chen
Li Shen
36
8
0
05 Mar 2022
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions with Superior OOD Generalization
Damien Teney
Ehsan Abbasnejad
Simon Lucey
Anton Van Den Hengel
46
87
0
12 May 2021
Pruning and Quantization for Deep Neural Network Acceleration: A Survey
Tailin Liang
C. Glossner
Lei Wang
Shaobo Shi
Xiaotong Zhang
MQ
150
675
0
24 Jan 2021
Baseline Pruning-Based Approach to Trojan Detection in Neural Networks
P. Bajcsy
Michael Majurski
AAML
42
8
0
22 Jan 2021
Training Sparse Neural Networks using Compressed Sensing
Jonathan W. Siegel
Jianhong Chen
Pengchuan Zhang
Jinchao Xu
26
5
0
21 Aug 2020
Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes
Mike Gartrell
Insu Han
Elvis Dohmatob
Jennifer Gillenwater
Victor-Emmanuel Brunel
28
16
0
17 Jun 2020
Proving the Lottery Ticket Hypothesis: Pruning is All You Need
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
64
271
0
03 Feb 2020
Resource-Efficient Neural Networks for Embedded Systems
Wolfgang Roth
Günther Schindler
Lukas Pfeifenberger
Robert Peharz
Sebastian Tschiatschek
Holger Fröning
Franz Pernkopf
Zoubin Ghahramani
34
47
0
07 Jan 2020
Depth-wise Decomposition for Accelerating Separable Convolutions in Efficient Convolutional Neural Networks
Yihui He
Jianing Qian
Jianren Wang
Cindy X. Le
Congrui Hetang
Qi Lyu
Wenping Wang
Tianwei Yue
48
11
0
21 Oct 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
41
434
0
25 Jan 2019
DPPNet: Approximating Determinantal Point Processes with Deep Networks
Zelda E. Mariet
Yaniv Ovadia
Jasper Snoek
27
10
0
07 Jan 2019
Channel Pruning for Accelerating Very Deep Neural Networks
Yihui He
Xiangyu Zhang
Jian Sun
101
2,505
0
19 Jul 2017
Data-Driven Sparse Structure Selection for Deep Neural Networks
Zehao Huang
Naiyan Wang
53
558
0
05 Jul 2017
Neurogenesis-Inspired Dictionary Learning: Online Model Adaption in a Changing World
S. Garg
Irina Rish
Guillermo Cecchi
A. Lozano
OffRL
CLL
33
6
0
22 Jan 2017
Sequence-Level Knowledge Distillation
Yoon Kim
Alexander M. Rush
47
1,099
0
25 Jun 2016
Low-Rank Factorization of Determinantal Point Processes for Recommendation
Mike Gartrell
Ulrich Paquet
Noam Koenigstein
21
77
0
17 Feb 2016
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
176
1,124
0
25 Jul 2012
1