ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.04777
  4. Cited By
Complete Dictionary Recovery over the Sphere II: Recovery by Riemannian
  Trust-region Method

Complete Dictionary Recovery over the Sphere II: Recovery by Riemannian Trust-region Method

15 November 2015
Ju Sun
Qing Qu
John N. Wright
ArXivPDFHTML

Papers citing "Complete Dictionary Recovery over the Sphere II: Recovery by Riemannian Trust-region Method"

22 / 22 papers shown
Title
Neural Collapse in Multi-label Learning with Pick-all-label Loss
Neural Collapse in Multi-label Learning with Pick-all-label Loss
Pengyu Li
Xiao Li
Yutong Wang
Qing Qu
30
8
0
24 Oct 2023
Learning Trees of $\ell_0$-Minimization Problems
Learning Trees of ℓ0\ell_0ℓ0​-Minimization Problems
G. Welper
21
0
0
06 Feb 2023
Optimal Regularization for a Data Source
Optimal Regularization for a Data Source
Oscar Leong
Eliza O'Reilly
Yong Sheng Soh
V. Chandrasekaran
25
4
0
27 Dec 2022
Neural Collapse with Normalized Features: A Geometric Analysis over the
  Riemannian Manifold
Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
Can Yaras
Peng Wang
Zhihui Zhu
Laura Balzano
Qing Qu
25
42
0
19 Sep 2022
A Geometric Analysis of Neural Collapse with Unconstrained Features
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
30
194
0
06 May 2021
Efficient Sparse Coding using Hierarchical Riemannian Pursuit
Efficient Sparse Coding using Hierarchical Riemannian Pursuit
Ye Xue
Vincent K. N. Lau
Songfu Cai
33
3
0
21 Apr 2021
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size
Alain Durmus
P. Jiménez
Eric Moulines
Salem Said
29
12
0
15 Feb 2021
Manifold Proximal Point Algorithms for Dual Principal Component Pursuit
  and Orthogonal Dictionary Learning
Manifold Proximal Point Algorithms for Dual Principal Component Pursuit and Orthogonal Dictionary Learning
Shixiang Chen
Zengde Deng
Shiqian Ma
Anthony Man-Cho So
18
28
0
05 May 2020
Analysis of the Optimization Landscapes for Overcomplete Representation
  Learning
Analysis of the Optimization Landscapes for Overcomplete Representation Learning
Qing Qu
Yuexiang Zhai
Xiao Li
Yuqian Zhang
Zhihui Zhu
22
9
0
05 Dec 2019
Short-and-Sparse Deconvolution -- A Geometric Approach
Short-and-Sparse Deconvolution -- A Geometric Approach
Yenson Lau
Qing Qu
Han-Wen Kuo
Pengcheng Zhou
Yuqian Zhang
John N. Wright
19
29
0
28 Aug 2019
Unique Sharp Local Minimum in $\ell_1$-minimization Complete Dictionary
  Learning
Unique Sharp Local Minimum in ℓ1\ell_1ℓ1​-minimization Complete Dictionary Learning
Yu Wang
Siqi Wu
Bin Yu
20
5
0
22 Feb 2019
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with
  Curvature Independent Rate
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
J.N. Zhang
Hongyi Zhang
S. Sra
26
39
0
10 Nov 2018
Diffusion Approximations for Online Principal Component Estimation and
  Global Convergence
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
C. J. Li
Mengdi Wang
Han Liu
Tong Zhang
34
12
0
29 Aug 2018
Optimistic mirror descent in saddle-point problems: Going the extra
  (gradient) mile
Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
P. Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
V. Chandrasekhar
Georgios Piliouras
34
291
0
07 Jul 2018
Averaging Stochastic Gradient Descent on Riemannian Manifolds
Averaging Stochastic Gradient Descent on Riemannian Manifolds
Nilesh Tripuraneni
Nicolas Flammarion
Francis R. Bach
Michael I. Jordan
38
99
0
26 Feb 2018
Blind Gain and Phase Calibration via Sparse Spectral Methods
Blind Gain and Phase Calibration via Sparse Spectral Methods
Yanjun Li
Kiryung Lee
Y. Bresler
24
27
0
30 Nov 2017
Learning Semidefinite Regularizers
Learning Semidefinite Regularizers
Yong Sheng Soh
V. Chandrasekaran
31
6
0
05 Jan 2017
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Hongyi Zhang
Sashank J. Reddi
S. Sra
36
240
0
23 May 2016
First-order Methods for Geodesically Convex Optimization
First-order Methods for Geodesically Convex Optimization
Hongyi Zhang
S. Sra
23
286
0
19 Feb 2016
Gradient Descent Converges to Minimizers
Gradient Descent Converges to Minimizers
J. Lee
Max Simchowitz
Michael I. Jordan
Benjamin Recht
32
212
0
16 Feb 2016
Dual Principal Component Pursuit
Dual Principal Component Pursuit
M. Tsakiris
René Vidal
26
96
0
15 Oct 2015
Complete Dictionary Recovery over the Sphere
Complete Dictionary Recovery over the Sphere
Ju Sun
Qing Qu
John N. Wright
33
202
0
26 Apr 2015
1