ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.03463
  4. Cited By
Granger Causality in Multi-variate Time Series using a Time Ordered
  Restricted Vector Autoregressive Model

Granger Causality in Multi-variate Time Series using a Time Ordered Restricted Vector Autoregressive Model

11 November 2015
Elsa Siggiridou
D. Kugiumtzis
    CML
ArXivPDFHTML

Papers citing "Granger Causality in Multi-variate Time Series using a Time Ordered Restricted Vector Autoregressive Model"

13 / 13 papers shown
Title
Transformers with Sparse Attention for Granger Causality
Transformers with Sparse Attention for Granger Causality
Riya Mahesh
Rahul Vashisht
Chandrashekar Lakshminarayanan
CML
62
1
0
20 Nov 2024
ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for
  Traffic Speed Prediction
ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for Traffic Speed Prediction
Yi Rong
Yingchi Mao
Yinqiu Liu
Ling Chen
Xiaoming He
Dusit Niyato
DiffM
18
1
0
22 Apr 2024
Information Flow Rate for Cross-Correlated Stochastic Processes
Information Flow Rate for Cross-Correlated Stochastic Processes
D. Hristopulos
11
1
0
10 Jan 2024
Neural Structure Learning with Stochastic Differential Equations
Neural Structure Learning with Stochastic Differential Equations
Benjie Wang
Joel Jennings
Wenbo Gong
CML
AI4TS
13
3
0
06 Nov 2023
Causal Discovery from Temporal Data: An Overview and New Perspectives
Causal Discovery from Temporal Data: An Overview and New Perspectives
Chang Gong
Di Yao
Chuzhe Zhang
Wenbin Li
Jingping Bi
AI4TS
CML
16
17
0
17 Mar 2023
Rhino: Deep Causal Temporal Relationship Learning With History-dependent
  Noise
Rhino: Deep Causal Temporal Relationship Learning With History-dependent Noise
Wenbo Gong
Joel Jennings
Chen Zhang
Nick Pawlowski
AI4TS
CML
11
25
0
26 Oct 2022
Testing for Causal Influence using a Partial Coherence Statistic
Testing for Causal Influence using a Partial Coherence Statistic
L. Scharf
Yuan Wang
13
0
0
07 Dec 2021
Causal Inference for Time series Analysis: Problems, Methods and
  Evaluation
Causal Inference for Time series Analysis: Problems, Methods and Evaluation
Raha Moraffah
Paras Sheth
Mansooreh Karami
Anchit Bhattacharya
Qianru Wang
Anique Tahir
A. Raglin
Huan Liu
CML
AI4TS
77
103
0
11 Feb 2021
Detecting direct causality in multivariate time series: A comparative
  study
Detecting direct causality in multivariate time series: A comparative study
A. Papana
Elsa Siggiridou
D. Kugiumtzis
CML
AI4TS
15
12
0
02 Nov 2020
Variable-lag Granger Causality and Transfer Entropy for Time Series
  Analysis
Variable-lag Granger Causality and Transfer Entropy for Time Series Analysis
Chainarong Amornbunchornvej
Elena Zheleva
T. Berger-Wolf
CML
11
45
0
01 Feb 2020
Variable-lag Granger Causality for Time Series Analysis
Variable-lag Granger Causality for Time Series Analysis
Chainarong Amornbunchornvej
Elena Zheleva
T. Berger-Wolf
CML
AI4TS
22
21
0
18 Dec 2019
Multi-variable LSTM neural network for autoregressive exogenous model
Multi-variable LSTM neural network for autoregressive exogenous model
Tian Guo
Tao R. Lin
BDL
AI4TS
24
19
0
17 Jun 2018
Discovering Graphical Granger Causality Using the Truncating Lasso
  Penalty
Discovering Graphical Granger Causality Using the Truncating Lasso Penalty
Ali Shojaie
George Michailidis
CML
68
214
0
03 Jul 2010
1