Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.02513
Cited By
Algorithmic Stability for Adaptive Data Analysis
8 November 2015
Raef Bassily
Kobbi Nissim
Adam D. Smith
Thomas Steinke
Uri Stemmer
Jonathan R. Ullman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Algorithmic Stability for Adaptive Data Analysis"
50 / 75 papers shown
Title
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
62
1
0
08 Nov 2023
Adversarially Robust Distributed Count Tracking via Partial Differential Privacy
Zhongzheng Xiong
Xiaoyi Zhu
Zengfeng Huang
25
1
0
01 Nov 2023
Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks
Jiayuan Ye
Zhenyu Zhu
Fanghui Liu
Reza Shokri
V. Cevher
42
12
0
31 Oct 2023
Generalization Guarantees via Algorithm-dependent Rademacher Complexity
Sarah Sachs
T. Erven
Liam Hodgkinson
Rajiv Khanna
Umut Simsekli
25
3
0
04 Jul 2023
Adaptive Data Analysis in a Balanced Adversarial Model
Kobbi Nissim
Uri Stemmer
Eliad Tsfadia
FedML
20
1
0
24 May 2023
Statistical Indistinguishability of Learning Algorithms
Alkis Kalavasis
Amin Karbasi
Shay Moran
Grigoris Velegkas
25
16
0
23 May 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
44
5
0
20 May 2023
List and Certificate Complexities in Replicable Learning
P. Dixon
A. Pavan
Jason Vander Woude
N. V. Vinodchandran
35
12
0
05 Apr 2023
Stability is Stable: Connections between Replicability, Privacy, and Adaptive Generalization
Mark Bun
Marco Gaboardi
Max Hopkins
R. Impagliazzo
Rex Lei
T. Pitassi
Satchit Sivakumar
Jessica Sorrell
28
29
0
22 Mar 2023
PRIMO: Private Regression in Multiple Outcomes
Seth Neel
25
0
0
07 Mar 2023
On Differential Privacy and Adaptive Data Analysis with Bounded Space
Itai Dinur
Uri Stemmer
David P. Woodruff
Samson Zhou
29
12
0
11 Feb 2023
Generalized Private Selection and Testing with High Confidence
E. Cohen
Xin Lyu
Jelani Nelson
Tamas Sarlos
Uri Stemmer
20
6
0
22 Nov 2022
Stability and Generalization for Markov Chain Stochastic Gradient Methods
Puyu Wang
Yunwen Lei
Yiming Ying
Ding-Xuan Zhou
24
18
0
16 Sep 2022
Algorithms with More Granular Differential Privacy Guarantees
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thomas Steinke
69
6
0
08 Sep 2022
Valid Inference after Causal Discovery
Paula Gradu
Tijana Zrnic
Yixin Wang
Michael I. Jordan
CML
28
8
0
11 Aug 2022
Improved Generalization Guarantees in Restricted Data Models
Elbert Du
Cynthia Dwork
25
1
0
20 Jul 2022
On the Privacy Properties of GAN-generated Samples
Zinan Lin
Vyas Sekar
Giulia Fanti
PICV
24
26
0
03 Jun 2022
Making Progress Based on False Discoveries
Roi Livni
38
0
0
19 Apr 2022
Low-Degree Multicalibration
Parikshit Gopalan
Michael P. Kim
M. Singhal
Shengjia Zhao
FaML
UQCV
22
37
0
02 Mar 2022
Causal Imitation Learning under Temporally Correlated Noise
Gokul Swamy
Sanjiban Choudhury
J. Andrew Bagnell
Zhiwei Steven Wu
CML
24
29
0
02 Feb 2022
Reproducibility in Learning
R. Impagliazzo
Rex Lei
T. Pitassi
Jessica Sorrell
32
43
0
20 Jan 2022
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
34
14
0
22 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
135
120
0
07 Oct 2021
A Framework for Adversarial Streaming via Differential Privacy and Difference Estimators
Idan Attias
E. Cohen
M. Shechner
Uri Stemmer
26
29
0
30 Jul 2021
Adaptive Machine Unlearning
Varun Gupta
Christopher Jung
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
Chris Waites
MU
25
174
0
08 Jun 2021
Non-Euclidean Differentially Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Raef Bassily
Cristóbal Guzmán
Anupama Nandi
59
66
0
01 Mar 2021
Machine Unlearning via Algorithmic Stability
Enayat Ullah
Tung Mai
Anup B. Rao
Ryan Rossi
R. Arora
35
103
0
25 Feb 2021
Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan
Alessandro Achille
Giovanni Paolini
Orchid Majumder
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
27
25
0
17 Jan 2021
A bounded-noise mechanism for differential privacy
Y. Dagan
Gil Kur
25
22
0
07 Dec 2020
Outcome Indistinguishability
Cynthia Dwork
Michael P. Kim
Omer Reingold
G. Rothblum
G. Yona
22
61
0
26 Nov 2020
Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization
Sharu Theresa Jose
Osvaldo Simeone
G. Durisi
31
17
0
04 Nov 2020
Permute-and-Flip: A new mechanism for differentially private selection
Ryan McKenna
Daniel Sheldon
112
47
0
23 Oct 2020
Bypassing the Ambient Dimension: Private SGD with Gradient Subspace Identification
Yingxue Zhou
Zhiwei Steven Wu
A. Banerjee
29
108
0
07 Jul 2020
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds
Yingxue Zhou
Xiangyi Chen
Mingyi Hong
Zhiwei Steven Wu
A. Banerjee
24
25
0
24 Jun 2020
Information-Theoretic Generalization Bounds for Meta-Learning and Applications
Sharu Theresa Jose
Osvaldo Simeone
38
45
0
09 May 2020
Efficient, Noise-Tolerant, and Private Learning via Boosting
Mark Bun
M. Carmosino
Jessica Sorrell
FedML
21
17
0
04 Feb 2020
Reasoning About Generalization via Conditional Mutual Information
Thomas Steinke
Lydia Zakynthinou
23
160
0
24 Jan 2020
The power of synergy in differential privacy: Combining a small curator with local randomizers
A. Beimel
Aleksandra Korolova
Kobbi Nissim
Or Sheffet
Uri Stemmer
34
14
0
18 Dec 2019
A New Analysis of Differential Privacy's Generalization Guarantees
Christopher Jung
Katrina Ligett
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
Moshe Shenfeld
FedML
21
47
0
09 Sep 2019
Private Stochastic Convex Optimization with Optimal Rates
Raef Bassily
Vitaly Feldman
Kunal Talwar
Abhradeep Thakurta
23
237
0
27 Aug 2019
Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions
Matthew Faw
Rajat Sen
Karthikeyan Shanmugam
Constantine Caramanis
Sanjay Shakkottai
36
3
0
23 Jul 2019
Guaranteed Validity for Empirical Approaches to Adaptive Data Analysis
Ryan M. Rogers
Aaron Roth
Adam D. Smith
Nathan Srebro
Om Thakkar
Blake E. Woodworth
16
17
0
21 Jun 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
38
122
0
04 Jun 2019
Model Similarity Mitigates Test Set Overuse
Horia Mania
John Miller
Ludwig Schmidt
Moritz Hardt
Benjamin Recht
22
50
0
29 May 2019
Private Identity Testing for High-Dimensional Distributions
C. Canonne
Gautam Kamath
Audra McMillan
Jonathan R. Ullman
Lydia Zakynthinou
37
36
0
28 May 2019
The advantages of multiple classes for reducing overfitting from test set reuse
Vitaly Feldman
Roy Frostig
Moritz Hardt
29
29
0
24 May 2019
Towards Formalizing the GDPR's Notion of Singling Out
A. Cohen
Kobbi Nissim
21
82
0
12 Apr 2019
A New Approach to Adaptive Data Analysis and Learning via Maximal Leakage
A. Esposito
Michael C. Gastpar
Ibrahim Issa
11
7
0
05 Mar 2019
High probability generalization bounds for uniformly stable algorithms with nearly optimal rate
Vitaly Feldman
J. Vondrák
35
154
0
27 Feb 2019
The Optimal Approximation Factor in Density Estimation
Olivier Bousquet
D. Kane
Shay Moran
19
18
0
10 Feb 2019
1
2
Next