ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.01942
  4. Cited By
Stop Wasting My Gradients: Practical SVRG

Stop Wasting My Gradients: Practical SVRG

5 November 2015
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark Schmidt
Jakub Konecný
Scott Sallinen
ArXivPDFHTML

Papers citing "Stop Wasting My Gradients: Practical SVRG"

10 / 10 papers shown
Title
Importance Sampling for Minibatches
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
101
115
0
06 Feb 2016
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
102
273
0
16 Apr 2015
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
133
1,826
0
01 Jul 2014
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
156
738
0
19 Mar 2014
Semi-Stochastic Gradient Descent Methods
Semi-Stochastic Gradient Descent Methods
Jakub Konecný
Peter Richtárik
ODL
116
238
0
05 Dec 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss
  Minimization
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
181
1,033
0
10 Sep 2012
A Stochastic Gradient Method with an Exponential Convergence Rate for
  Finite Training Sets
A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets
Nicolas Le Roux
Mark Schmidt
Francis R. Bach
ODL
70
104
0
28 Feb 2012
Convergence Rates of Inexact Proximal-Gradient Methods for Convex
  Optimization
Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
205
583
0
12 Sep 2011
Hybrid Deterministic-Stochastic Methods for Data Fitting
Hybrid Deterministic-Stochastic Methods for Data Fitting
M. Friedlander
Mark Schmidt
196
387
0
13 Apr 2011
Piecewise linear regularized solution paths
Piecewise linear regularized solution paths
Saharon Rosset
Ji Zhu
525
521
0
16 Aug 2007
1