Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.01707
Cited By
Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
5 November 2015
J. Dahlin
Thomas B. Schon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models"
25 / 25 papers shown
Title
Accelerating pseudo-marginal Metropolis-Hastings by correlating auxiliary variables
J. Dahlin
Fredrik Lindsten
J. Kronander
Thomas B. Schon
50
37
0
17 Nov 2015
The Correlated Pseudo-Marginal Method
George Deligiannidis
Arnaud Doucet
M. Pitt
57
101
0
16 Nov 2015
An Introduction to Twisted Particle Filters and Parameter Estimation in Non-linear State-space Models
Juha Ala-Luhtala
N. Whiteley
K. Heine
R. Piché
51
21
0
30 Sep 2015
A New Approach to Probabilistic Programming Inference
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
59
346
0
03 Jul 2015
Bayesian optimisation for fast approximate inference in state-space models with intractable likelihoods
J. Dahlin
M. Villani
Thomas B. Schon
41
6
0
23 Jun 2015
Sequential Monte Carlo Methods for System Identification
Thomas B. Schon
Fredrik Lindsten
J. Dahlin
Johan Waagberg
C. A. Naesseth
Andreas Svensson
L. Dai
72
79
0
20 Mar 2015
Quasi-Newton particle Metropolis-Hastings
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
121
9
0
12 Feb 2015
Nested Sequential Monte Carlo Methods
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
426
84
0
09 Feb 2015
Particle Metropolis-adjusted Langevin algorithms
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
57
24
0
23 Dec 2014
Biips: Software for Bayesian Inference with Interacting Particle Systems
A. Todeschini
François Caron
Marc Fuentes
P. Legrand
P. Del Moral
45
26
0
11 Dec 2014
Forest resampling for distributed sequential Monte Carlo
Anthony Lee
N. Whiteley
47
25
0
23 Jun 2014
Venture: a higher-order probabilistic programming platform with programmable inference
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
61
255
0
01 Apr 2014
A Compilation Target for Probabilistic Programming Languages
Brooks Paige
Frank Wood
56
80
0
03 Mar 2014
Sequential Quasi-Monte Carlo
Mathieu Gerber
Nicolas Chopin
65
56
0
17 Feb 2014
Particle Gibbs with Ancestor Sampling
Fredrik Lindsten
Michael I. Jordan
Thomas B. Schon
100
252
0
03 Jan 2014
Particle Metropolis-Hastings using gradient and Hessian information
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
72
47
0
04 Nov 2013
On the efficiency of pseudo-marginal random walk Metropolis algorithms
Chris Sherlock
Alexandre Hoang Thiery
Gareth O. Roberts
Jeffrey S. Rosenthal
69
191
0
27 Sep 2013
vSMC: Parallel Sequential Monte Carlo in C++
Yan Zhou
48
15
0
24 Jun 2013
Bayesian State-Space Modelling on High-Performance Hardware Using LibBi
Lawrence M. Murray
81
112
0
14 Jun 2013
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks
Arnaud Doucet
Nando de Freitas
Kevin P. Murphy
Stuart J. Russell
97
1,489
0
16 Jan 2013
SMC^2: an efficient algorithm for sequential analysis of state-space models
Nicolas Chopin
Pierre E. Jacob
O. Papaspiliopoulos
87
357
0
07 Jan 2011
Approximate Bayesian Computational methods
Jean-Michel Marin
Pierre Pudlo
Christian P. Robert
Robin J. Ryder
206
862
0
05 Jan 2011
Zero Variance Markov Chain Monte Carlo for Bayesian Estimators
Antonietta Mira
R. Solgi
D. Imparato
89
89
0
14 Dec 2010
On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods
Anthony Lee
C. Yau
M. Giles
Arnaud Doucet
Christopher C. Holmes
95
322
0
14 May 2009
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
168
894
0
31 Mar 2009
1