ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.00758
  4. Cited By
High-Performance and Tunable Stereo Reconstruction

High-Performance and Tunable Stereo Reconstruction

3 November 2015
Sudeep Pillai
Srikumar Ramalingam
J. Leonard
ArXivPDFHTML

Papers citing "High-Performance and Tunable Stereo Reconstruction"

6 / 6 papers shown
Title
Smooth Mesh Estimation from Depth Data using Non-Smooth Convex
  Optimization
Smooth Mesh Estimation from Depth Data using Non-Smooth Convex Optimization
Antoni Rosinol
Luca Carlone
18
3
0
06 Aug 2021
Incremental Visual-Inertial 3D Mesh Generation with Structural
  Regularities
Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities
Antoni Rosinol
Torsten Sattler
Marc Pollefeys
Luca Carlone
10
45
0
04 Mar 2019
Real-Time Dense Mapping for Self-driving Vehicles using Fisheye Cameras
Real-Time Dense Mapping for Self-driving Vehicles using Fisheye Cameras
Zhaopeng Cui
Lionel Heng
Y. Yeo
Andreas Geiger
Marc Pollefeys
Torsten Sattler
MDE
27
38
0
17 Sep 2018
Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile
  Robots
Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile Robots
Chen-lei Zhou
Jiaolong Yang
Chunshui Zhao
G. Hua
27
16
0
14 Aug 2017
Sparse Depth Sensing for Resource-Constrained Robots
Sparse Depth Sensing for Resource-Constrained Robots
Fangchang Ma
Luca Carlone
U. Ayaz
S. Karaman
3DV
24
31
0
04 Mar 2017
Fast Robust Monocular Depth Estimation for Obstacle Detection with Fully
  Convolutional Networks
Fast Robust Monocular Depth Estimation for Obstacle Detection with Fully Convolutional Networks
Michele Mancini
G. Costante
P. Valigi
Thomas Alessandro Ciarfuglia
20
105
0
21 Jul 2016
1