Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.00175
Cited By
FireCaffe: near-linear acceleration of deep neural network training on compute clusters
31 October 2015
F. Iandola
Khalid Ashraf
Matthew W. Moskewicz
Kurt Keutzer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FireCaffe: near-linear acceleration of deep neural network training on compute clusters"
50 / 106 papers shown
Title
Routing for Large ML Models
Ofir Cohen
Jose Yallouz Michael Schapira
Shahar Belkar
Tal Mizrahi
63
0
0
07 Mar 2025
Gradient Inversion Attack on Graph Neural Networks
Divya Anand Sinha
Yezi Liu
Ruijie Du
Yanning Shen
FedML
73
0
0
29 Nov 2024
Seamless Integration: Sampling Strategies in Federated Learning Systems
T. Legler
Vinit Hegiste
Martin Ruskowski
FedML
41
1
0
18 Aug 2024
Is Diffusion Model Safe? Severe Data Leakage via Gradient-Guided Diffusion Model
Jiayang Meng
Tao Huang
Hong Chen
Cuiping Li
DiffM
31
1
0
13 Jun 2024
Scaling Up Deep Clustering Methods Beyond ImageNet-1K
Nikolas Adaloglou
Félix D. P. Michels
Kaspar Senft
Diana Petrusheva
M. Kollmann
57
1
0
03 Jun 2024
Temporal Knowledge Distillation for Time-Sensitive Financial Services Applications
Hongda Shen
Eren Kurshan
AAML
32
1
0
28 Dec 2023
DeViT: Decomposing Vision Transformers for Collaborative Inference in Edge Devices
Guanyu Xu
Zhiwei Hao
Yong Luo
Han Hu
J. An
Shiwen Mao
ViT
45
14
0
10 Sep 2023
TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent Kernels
Yaodong Yu
Alexander Wei
Sai Praneeth Karimireddy
Yi Ma
Michael I. Jordan
FedML
17
30
0
13 Jul 2022
On the Permanence of Backdoors in Evolving Models
Huiying Li
A. Bhagoji
Yuxin Chen
Haitao Zheng
Ben Y. Zhao
AAML
37
2
0
08 Jun 2022
Analysing the Influence of Attack Configurations on the Reconstruction of Medical Images in Federated Learning
M. Dahlgaard
Morten Wehlast Jorgensen
N. Fuglsang
Hiba Nassar
FedML
AAML
38
2
0
25 Apr 2022
FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling and Correction
Liang Gao
Huazhu Fu
Li Li
Yingwen Chen
Minghua Xu
Chengzhong Xu
FedML
40
243
0
22 Mar 2022
Privacy protection based on mask template
Hao Wang
Yunkun Bai
Guangmin Sun
Jie Liu
PICV
13
0
0
13 Feb 2022
TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs
Weiyang Wang
Moein Khazraee
Zhizhen Zhong
M. Ghobadi
Zhihao Jia
Dheevatsa Mudigere
Ying Zhang
A. Kewitsch
39
85
0
01 Feb 2022
Layer-Parallel Training of Residual Networks with Auxiliary-Variable Networks
Qi Sun
Hexin Dong
Zewei Chen
Jiacheng Sun
Zhenguo Li
Bin Dong
29
1
0
10 Dec 2021
Manas: Mining Software Repositories to Assist AutoML
Giang Nguyen
Johir Islam
Rangeet Pan
Hridesh Rajan
51
15
0
06 Dec 2021
CAFE: Catastrophic Data Leakage in Vertical Federated Learning
Xiao Jin
Pin-Yu Chen
Chia-Yi Hsu
Chia-Mu Yu
Tianyi Chen
FedML
9
145
0
26 Oct 2021
FedPAGE: A Fast Local Stochastic Gradient Method for Communication-Efficient Federated Learning
Haoyu Zhao
Zhize Li
Peter Richtárik
FedML
27
29
0
10 Aug 2021
FA-GAN: Fused Attentive Generative Adversarial Networks for MRI Image Super-Resolution
M. Jiang
Min Zhi
Liying Wei
Xiaocheng Yang
Jucheng Zhang
Yongming Li
Pin Wang
Jiahao Huang
Guang Yang
MedIm
30
83
0
09 Aug 2021
Concurrent Adversarial Learning for Large-Batch Training
Yong Liu
Xiangning Chen
Minhao Cheng
Cho-Jui Hsieh
Yang You
ODL
36
13
0
01 Jun 2021
Cloud Collectives: Towards Cloud-aware Collectives forML Workloads with Rank Reordering
Liang Luo
Jacob Nelson
Arvind Krishnamurthy
Luis Ceze
93
1
0
28 May 2021
A Sum-of-Ratios Multi-Dimensional-Knapsack Decomposition for DNN Resource Scheduling
Menglu Yu
Chuan Wu
Bo Ji
Jia Liu
13
9
0
28 May 2021
GRNN: Generative Regression Neural Network -- A Data Leakage Attack for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
SILM
AAML
FedML
58
101
0
02 May 2021
Partitioning sparse deep neural networks for scalable training and inference
G. Demirci
Hakan Ferhatosmanoglu
20
11
0
23 Apr 2021
See through Gradients: Image Batch Recovery via GradInversion
Hongxu Yin
Arun Mallya
Arash Vahdat
J. Álvarez
Jan Kautz
Pavlo Molchanov
FedML
25
460
0
15 Apr 2021
On the Utility of Gradient Compression in Distributed Training Systems
Saurabh Agarwal
Hongyi Wang
Shivaram Venkataraman
Dimitris Papailiopoulos
38
46
0
28 Feb 2021
Accordion: Adaptive Gradient Communication via Critical Learning Regime Identification
Saurabh Agarwal
Hongyi Wang
Kangwook Lee
Shivaram Venkataraman
Dimitris Papailiopoulos
34
25
0
29 Oct 2020
Towards a Scalable and Distributed Infrastructure for Deep Learning Applications
Bita Hasheminezhad
S. Shirzad
Nanmiao Wu
Patrick Diehl
Hannes Schulz
Hartmut Kaiser
GNN
AI4CE
27
4
0
06 Oct 2020
Sparse Communication for Training Deep Networks
Negar Foroutan
Martin Jaggi
FedML
30
16
0
19 Sep 2020
PSO-PS: Parameter Synchronization with Particle Swarm Optimization for Distributed Training of Deep Neural Networks
Qing Ye
Y. Han
Yanan Sun
Jiancheng Lv
28
3
0
06 Sep 2020
A Practical Layer-Parallel Training Algorithm for Residual Networks
Qi Sun
Hexin Dong
Zewei Chen
Weizhen Dian
Jiacheng Sun
Yitong Sun
Zhenguo Li
Bin Dong
ODL
24
2
0
03 Sep 2020
CLAN: Continuous Learning using Asynchronous Neuroevolution on Commodity Edge Devices
Parth Mannan
A. Samajdar
T. Krishna
31
2
0
27 Aug 2020
Addressing Class Imbalance in Federated Learning
Lixu Wang
Shichao Xu
Tianlin Li
Qi Zhu
FedML
24
18
0
14 Aug 2020
HyperTune: Dynamic Hyperparameter Tuning For Efficient Distribution of DNN Training Over Heterogeneous Systems
Ali Heydarigorji
Siavash Rezaei
Mahdi Torabzadehkashi
Hossein Bobarshad
V. Alves
Pai H. Chou
19
14
0
16 Jul 2020
Distributed Training of Deep Learning Models: A Taxonomic Perspective
M. Langer
Zhen He
W. Rahayu
Yanbo Xue
30
76
0
08 Jul 2020
Computation Offloading in Multi-Access Edge Computing Networks: A Multi-Task Learning Approach
Bofu Yang
Xuelin Cao
J. Bassey
Xiangfang Li
Timothy S. Kroecker
Lijun Qian
11
26
0
29 Jun 2020
With Great Dispersion Comes Greater Resilience: Efficient Poisoning Attacks and Defenses for Linear Regression Models
Jialin Wen
Benjamin Zi Hao Zhao
Minhui Xue
Alina Oprea
Hai-feng Qian
AAML
16
19
0
21 Jun 2020
SqueezeBERT: What can computer vision teach NLP about efficient neural networks?
F. Iandola
Albert Eaton Shaw
Ravi Krishna
Kurt Keutzer
VLM
28
127
0
19 Jun 2020
Decentralised Learning from Independent Multi-Domain Labels for Person Re-Identification
Guile Wu
S. Gong
OOD
8
27
0
07 Jun 2020
ZynqNet: An FPGA-Accelerated Embedded Convolutional Neural Network
David Gschwend
35
64
0
14 May 2020
Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging
Shigang Li
Tal Ben-Nun
Giorgi Nadiradze
Salvatore Di Girolamo
Nikoli Dryden
Dan Alistarh
Torsten Hoefler
29
15
0
30 Apr 2020
Caramel: Accelerating Decentralized Distributed Deep Learning with Computation Scheduling
Sayed Hadi Hashemi
Sangeetha Abdu Jyothi
Brighten Godfrey
R. Campbell
17
2
0
29 Apr 2020
Characterizing and Modeling Distributed Training with Transient Cloud GPU Servers
Shijian Li
R. Walls
Tian Guo
31
23
0
07 Apr 2020
A Crowdsourcing Framework for On-Device Federated Learning
Shashi Raj Pandey
N. H. Tran
M. Bennis
Y. Tun
Aunas Manzoor
Choong Seon Hong
FedML
22
250
0
04 Nov 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
28
343
0
14 Oct 2019
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets
S. A. Jacobs
B. Van Essen
D. Hysom
Jae-Seung Yeom
Tim Moon
...
J. Gaffney
Tom Benson
Peter B. Robinson
L. Peterson
B. Spears
BDL
AI4CE
22
17
0
05 Oct 2019
Performance Analysis and Comparison of Distributed Machine Learning Systems
S. Alqahtani
Murat Demirbas
7
25
0
04 Sep 2019
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale
A. G. Baydin
Lei Shao
W. Bhimji
Lukas Heinrich
Lawrence Meadows
...
Philip Torr
Victor W. Lee
Kyle Cranmer
P. Prabhat
Frank Wood
28
55
0
08 Jul 2019
Gradient Noise Convolution (GNC): Smoothing Loss Function for Distributed Large-Batch SGD
Kosuke Haruki
Taiji Suzuki
Yohei Hamakawa
Takeshi Toda
Ryuji Sakai
M. Ozawa
Mitsuhiro Kimura
ODL
6
17
0
26 Jun 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
40
2,160
0
21 Jun 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
19
317
0
31 May 2019
1
2
3
Next