Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.00146
Cited By
v1
v2
v3 (latest)
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
31 October 2015
Mohammad Emtiyaz Khan
Reza Babanezhad
Wu Lin
Mark Schmidt
Masashi Sugiyama
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions"
31 / 31 papers shown
Title
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
89
2
0
04 Jun 2024
Batch and match: black-box variational inference with a score-based divergence
Diana Cai
Chirag Modi
Loucas Pillaud-Vivien
C. Margossian
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
77
10
0
22 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
72
4
0
19 Jan 2024
Linear Convergence of Black-Box Variational Inference: Should We Stick the Landing?
Kyurae Kim
Yian Ma
Jacob R. Gardner
113
7
0
27 Jul 2023
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift
Florian Seligmann
P. Becker
Michael Volpp
Gerhard Neumann
UQCV
87
16
0
21 Jun 2023
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
99
21
0
04 Jun 2023
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
96
17
0
24 May 2023
Variational Bayes Made Easy
Mohammad Emtiyaz Khan
BDL
64
1
0
27 Apr 2023
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
86
3
0
09 Nov 2022
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
126
17
0
23 Sep 2022
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
65
14
0
24 Feb 2022
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
93
23
0
05 Nov 2021
Sparse Algorithms for Markovian Gaussian Processes
William J. Wilkinson
Arno Solin
Vincent Adam
62
12
0
19 Mar 2021
Homeomorphic-Invariance of EM: Non-Asymptotic Convergence in KL Divergence for Exponential Families via Mirror Descent
Frederik Kunstner
Raunak Kumar
Mark Schmidt
84
22
0
02 Nov 2020
Efficient Variational Bayes Learning of Graphical Models with Smooth Structural Changes
Hang Yu
Songwei Wu
Justin Dauwels
68
5
0
16 Sep 2020
Trust-Region Variational Inference with Gaussian Mixture Models
Oleg Arenz
Mingjun Zhong
Gerhard Neumann
87
20
0
10 Jul 2019
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
111
71
0
07 Jun 2019
Provable Smoothness Guarantees for Black-Box Variational Inference
Justin Domke
74
36
0
24 Jan 2019
Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language
Matthew D. Hoffman
Matthew J. Johnson
Dustin Tran
62
17
0
29 Nov 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
91
56
0
27 Nov 2018
DAPPER: Scaling Dynamic Author Persona Topic Model to Billion Word Corpora
S. Zee
Alice Havrileck
32
3
0
03 Nov 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
200
271
0
13 Jun 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
91
86
0
24 Mar 2018
Boosted Density Estimation Remastered
Zac Cranko
Richard Nock
GAN
69
12
0
22 Mar 2018
Topic Modeling on Health Journals with Regularized Variational Inference
Robert Giaquinto
A. Banerjee
68
6
0
15 Jan 2018
Boosting Variational Inference: an Optimization Perspective
Francesco Locatello
Rajiv Khanna
Joydeep Ghosh
Gunnar Rätsch
71
36
0
05 Aug 2017
Cooperative Hierarchical Dirichlet Processes: Superposition vs. Maximization
Junyu Xuan
Jie Lu
Guangquan Zhang
R. Xu
66
4
0
18 Jul 2017
Proximity Variational Inference
Jaan Altosaar
Rajesh Ranganath
David M. Blei
BDL
43
22
0
24 May 2017
Stochastic Sequential Neural Networks with Structured Inference
Hao Liu
Haoli Bai
Lirong He
Zenglin Xu
BDL
51
3
0
24 May 2017
Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Mohammad Emtiyaz Khan
Wu Lin
BDL
88
137
0
13 Mar 2017
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDL
OCL
123
486
0
20 Mar 2016
1