ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.08628
  4. Cited By
WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet
  Allocation

WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet Allocation

29 October 2015
Jianfei Chen
Kaiwei Li
Jun Zhu
Wenguang Chen
ArXivPDFHTML

Papers citing "WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet Allocation"

8 / 8 papers shown
Title
Improving the Inference of Topic Models via Infinite Latent State
  Replications
Improving the Inference of Topic Models via Infinite Latent State Replications
Daniel Rugeles
Zhen Hai
Juan Felipe Carmona
M. Dash
Gao Cong
BDL
22
1
0
25 Jan 2023
Towards Training Probabilistic Topic Models on Neuromorphic Multi-chip
  Systems
Towards Training Probabilistic Topic Models on Neuromorphic Multi-chip Systems
Zihao Xiao
Jianfei Chen
Jun Zhu
BDL
14
0
0
10 Apr 2018
CuLDA_CGS: Solving Large-scale LDA Problems on GPUs
CuLDA_CGS: Solving Large-scale LDA Problems on GPUs
Xiaolong Xie
Yun Liang
Xiuhong Li
Wei Tan
11
8
0
13 Mar 2018
Efficient Correlated Topic Modeling with Topic Embedding
Efficient Correlated Topic Modeling with Topic Embedding
Junxian He
Zhiting Hu
Taylor Berg-Kirkpatrick
Ying Huang
Eric P. Xing
23
48
0
01 Jul 2017
Improving Interpretability of Deep Neural Networks with Semantic
  Information
Improving Interpretability of Deep Neural Networks with Semantic Information
Yinpeng Dong
Hang Su
Jun Zhu
Bo Zhang
27
122
0
12 Mar 2017
Computing Web-scale Topic Models using an Asynchronous Parameter Server
Computing Web-scale Topic Models using an Asynchronous Parameter Server
R. Jagerman
Carsten Eickhoff
Maarten de Rijke
12
15
0
24 May 2016
Scaling up Dynamic Topic Models
Scaling up Dynamic Topic Models
Arnab Bhadury
Jianfei Chen
Jun Zhu
Shixia Liu
BDL
32
67
0
19 Feb 2016
Dense Distributions from Sparse Samples: Improved Gibbs Sampling
  Parameter Estimators for LDA
Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA
Yannis Papanikolaou
James R. Foulds
T. Rubin
Grigorios Tsoumakas
25
34
0
08 May 2015
1