Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1510.06053
Cited By
Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction
20 October 2015
Tiangang Cui
Youssef M. Marzouk
Karen E. Willcox
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction"
9 / 9 papers shown
Title
Coupled Input-Output Dimension Reduction: Application to Goal-oriented Bayesian Experimental Design and Global Sensitivity Analysis
Qiao Chen
Elise Arnaud
Ricardo Baptista
O. Zahm
79
1
0
19 Jun 2024
Dimension-independent likelihood-informed MCMC
Tiangang Cui
K. Law
Youssef M. Marzouk
49
200
0
13 Nov 2014
Optimal low-rank approximations of Bayesian linear inverse problems
Alessio Spantini
A. Solonen
Tiangang Cui
James Martin
L. Tenorio
Youssef Marzouk
73
130
0
13 Jul 2014
Likelihood-informed dimension reduction for nonlinear inverse problems
Tiangang Cui
James Martin
Youssef M. Marzouk
A. Solonen
Alessio Spantini
67
159
0
19 Mar 2014
Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems
Tiangang Cui
Youssef M. Marzouk
Karen E. Willcox
48
169
0
17 Mar 2014
A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet flow inverse problems
N. Petra
James Martin
G. Stadler
Omar Ghattas
68
231
0
28 Aug 2013
A computational framework for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with application to global seismic inversion
T. Bui-Thanh
Omar Ghattas
James Martin
G. Stadler
71
392
0
06 Aug 2013
Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions
Natesh S. Pillai
Andrew M. Stuart
Alexandre Hoang Thiery
87
99
0
02 Mar 2011
Diffusion limits of the random walk Metropolis algorithm in high dimensions
Jonathan C. Mattingly
Natesh S. Pillai
Andrew M. Stuart
99
114
0
22 Mar 2010
1