ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.06053
  4. Cited By
Scalable posterior approximations for large-scale Bayesian inverse
  problems via likelihood-informed parameter and state reduction

Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction

20 October 2015
Tiangang Cui
Youssef M. Marzouk
Karen E. Willcox
ArXivPDFHTML

Papers citing "Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction"

9 / 9 papers shown
Title
Coupled Input-Output Dimension Reduction: Application to Goal-oriented Bayesian Experimental Design and Global Sensitivity Analysis
Coupled Input-Output Dimension Reduction: Application to Goal-oriented Bayesian Experimental Design and Global Sensitivity Analysis
Qiao Chen
Elise Arnaud
Ricardo Baptista
O. Zahm
79
1
0
19 Jun 2024
Dimension-independent likelihood-informed MCMC
Dimension-independent likelihood-informed MCMC
Tiangang Cui
K. Law
Youssef M. Marzouk
49
200
0
13 Nov 2014
Optimal low-rank approximations of Bayesian linear inverse problems
Optimal low-rank approximations of Bayesian linear inverse problems
Alessio Spantini
A. Solonen
Tiangang Cui
James Martin
L. Tenorio
Youssef Marzouk
73
130
0
13 Jul 2014
Likelihood-informed dimension reduction for nonlinear inverse problems
Likelihood-informed dimension reduction for nonlinear inverse problems
Tiangang Cui
James Martin
Youssef M. Marzouk
A. Solonen
Alessio Spantini
67
159
0
19 Mar 2014
Data-Driven Model Reduction for the Bayesian Solution of Inverse
  Problems
Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems
Tiangang Cui
Youssef M. Marzouk
Karen E. Willcox
48
169
0
17 Mar 2014
A computational framework for infinite-dimensional Bayesian inverse
  problems: Part II. Stochastic Newton MCMC with application to ice sheet flow
  inverse problems
A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet flow inverse problems
N. Petra
James Martin
G. Stadler
Omar Ghattas
68
231
0
28 Aug 2013
A computational framework for infinite-dimensional Bayesian inverse
  problems. Part I: The linearized case, with application to global seismic
  inversion
A computational framework for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with application to global seismic inversion
T. Bui-Thanh
Omar Ghattas
James Martin
G. Stadler
71
392
0
06 Aug 2013
Optimal scaling and diffusion limits for the Langevin algorithm in high
  dimensions
Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions
Natesh S. Pillai
Andrew M. Stuart
Alexandre Hoang Thiery
87
99
0
02 Mar 2011
Diffusion limits of the random walk Metropolis algorithm in high
  dimensions
Diffusion limits of the random walk Metropolis algorithm in high dimensions
Jonathan C. Mattingly
Natesh S. Pillai
Andrew M. Stuart
99
114
0
22 Mar 2010
1