Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1510.02173
Cited By
Data-Efficient Learning of Feedback Policies from Image Pixels using Deep Dynamical Models
8 October 2015
Yannis Assael
Niklas Wahlström
Thomas B. Schon
M. Deisenroth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data-Efficient Learning of Feedback Policies from Image Pixels using Deep Dynamical Models"
10 / 10 papers shown
Title
Learning Actionable Representations with Goal-Conditioned Policies
Dibya Ghosh
Abhishek Gupta
Sergey Levine
32
109
0
19 Nov 2018
SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
Marvin Zhang
Sharad Vikram
Laura M. Smith
Pieter Abbeel
Matthew J. Johnson
Sergey Levine
OffRL
23
41
0
28 Aug 2018
A survey on policy search algorithms for learning robot controllers in a handful of trials
Konstantinos Chatzilygeroudis
Vassilis Vassiliades
F. Stulp
Sylvain Calinon
Jean-Baptiste Mouret
17
155
0
06 Jul 2018
State Representation Learning for Control: An Overview
Timothée Lesort
Natalia Díaz Rodríguez
Jean-François Goudou
David Filliat
OffRL
45
319
0
12 Feb 2018
Design of Deep Neural Networks as Add-on Blocks for Improving Impromptu Trajectory Tracking
Siqi Zhou
M. Helwa
Angela P. Schoellig
8
35
0
31 May 2017
Learning to Learn without Gradient Descent by Gradient Descent
Yutian Chen
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Timothy Lillicrap
Matt Botvinick
Nando de Freitas
21
42
0
11 Nov 2016
Learning to Perform Physics Experiments via Deep Reinforcement Learning
Misha Denil
Pulkit Agrawal
Tejas D. Kulkarni
Tom Erez
Peter W. Battaglia
Nando de Freitas
AI4CE
46
339
0
06 Nov 2016
Multi-Objective Deep Reinforcement Learning
Hossam Mossalam
Yannis Assael
D. Roijers
Shimon Whiteson
35
151
0
09 Oct 2016
Towards Deep Symbolic Reinforcement Learning
M. Garnelo
Kai Arulkumaran
Murray Shanahan
30
225
0
18 Sep 2016
Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks
Jakob N. Foerster
Yannis Assael
Nando de Freitas
Shimon Whiteson
21
147
0
08 Feb 2016
1