Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.09236
Cited By
On the Complexity of Robust PCA and
ℓ
1
\ell_1
ℓ
1
-norm Low-Rank Matrix Approximation
30 September 2015
Nicolas Gillis
S. Vavasis
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Complexity of Robust PCA and $\ell_1$-norm Low-Rank Matrix Approximation"
6 / 6 papers shown
Title
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
33
3
0
06 Mar 2023
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
29
25
0
27 Apr 2022
An Overview of Robust Subspace Recovery
Gilad Lerman
Tyler Maunu
15
130
0
02 Mar 2018
Approximation Algorithms for
ℓ
0
\ell_0
ℓ
0
-Low Rank Approximation
K. Bringmann
Pavel Kolev
David P. Woodruff
24
13
0
30 Oct 2017
Recovery Guarantees for One-hidden-layer Neural Networks
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
34
336
0
10 Jun 2017
On Verifiable Sufficient Conditions for Sparse Signal Recovery via
ℓ
1
\ell_1
ℓ
1
Minimization
A. Juditsky
A. Nemirovski
106
142
0
16 Sep 2008
1