ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.09236
  4. Cited By
On the Complexity of Robust PCA and $\ell_1$-norm Low-Rank Matrix
  Approximation

On the Complexity of Robust PCA and ℓ1\ell_1ℓ1​-norm Low-Rank Matrix Approximation

30 September 2015
Nicolas Gillis
S. Vavasis
    OOD
ArXivPDFHTML

Papers citing "On the Complexity of Robust PCA and $\ell_1$-norm Low-Rank Matrix Approximation"

6 / 6 papers shown
Title
Critical Points and Convergence Analysis of Generative Deep Linear
  Networks Trained with Bures-Wasserstein Loss
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
33
3
0
06 Mar 2023
Learning Green's functions associated with time-dependent partial
  differential equations
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
29
25
0
27 Apr 2022
An Overview of Robust Subspace Recovery
An Overview of Robust Subspace Recovery
Gilad Lerman
Tyler Maunu
15
130
0
02 Mar 2018
Approximation Algorithms for $\ell_0$-Low Rank Approximation
Approximation Algorithms for ℓ0\ell_0ℓ0​-Low Rank Approximation
K. Bringmann
Pavel Kolev
David P. Woodruff
24
13
0
30 Oct 2017
Recovery Guarantees for One-hidden-layer Neural Networks
Recovery Guarantees for One-hidden-layer Neural Networks
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
34
336
0
10 Jun 2017
On Verifiable Sufficient Conditions for Sparse Signal Recovery via
  $\ell_1$ Minimization
On Verifiable Sufficient Conditions for Sparse Signal Recovery via ℓ1\ell_1ℓ1​ Minimization
A. Juditsky
A. Nemirovski
106
142
0
16 Sep 2008
1