ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.06569
  4. Cited By
Tensorizing Neural Networks

Tensorizing Neural Networks

22 September 2015
Alexander Novikov
D. Podoprikhin
A. Osokin
Dmitry Vetrov
ArXivPDFHTML

Papers citing "Tensorizing Neural Networks"

50 / 149 papers shown
Title
Tensor Methods in Computer Vision and Deep Learning
Tensor Methods in Computer Vision and Deep Learning
Yannis Panagakis
Jean Kossaifi
Grigorios G. Chrysos
James Oldfield
M. Nicolaou
Anima Anandkumar
S. Zafeiriou
34
119
0
07 Jul 2021
Layer Folding: Neural Network Depth Reduction using Activation
  Linearization
Layer Folding: Neural Network Depth Reduction using Activation Linearization
Amir Ben Dror
Niv Zehngut
Avraham Raviv
E. Artyomov
Ran Vitek
R. Jevnisek
29
20
0
17 Jun 2021
Quantum-inspired event reconstruction with Tensor Networks: Matrix
  Product States
Quantum-inspired event reconstruction with Tensor Networks: Matrix Product States
Jack Y. Araz
M. Spannowsky
42
16
0
15 Jun 2021
Marginalizable Density Models
Marginalizable Density Models
D. Gilboa
Ari Pakman
Thibault Vatter
BDL
32
5
0
08 Jun 2021
Tensor-Train Recurrent Neural Networks for Interpretable Multi-Way
  Financial Forecasting
Tensor-Train Recurrent Neural Networks for Interpretable Multi-Way Financial Forecasting
Y. Xu
G. G. Calvi
Danilo P. Mandic
AI4TS
19
11
0
11 May 2021
3U-EdgeAI: Ultra-Low Memory Training, Ultra-Low BitwidthQuantization,
  and Ultra-Low Latency Acceleration
3U-EdgeAI: Ultra-Low Memory Training, Ultra-Low BitwidthQuantization, and Ultra-Low Latency Acceleration
Yao Chen
Cole Hawkins
Kaiqi Zhang
Zheng-Wei Zhang
Cong Hao
26
8
0
11 May 2021
ResMLP: Feedforward networks for image classification with
  data-efficient training
ResMLP: Feedforward networks for image classification with data-efficient training
Hugo Touvron
Piotr Bojanowski
Mathilde Caron
Matthieu Cord
Alaaeldin El-Nouby
...
Gautier Izacard
Armand Joulin
Gabriel Synnaeve
Jakob Verbeek
Hervé Jégou
VLM
36
656
0
07 May 2021
Local approximate Gaussian process regression for data-driven
  constitutive laws: Development and comparison with neural networks
Local approximate Gaussian process regression for data-driven constitutive laws: Development and comparison with neural networks
J. Fuhg
M. Marino
N. Bouklas
31
59
0
07 May 2021
Spatio-Temporal Pruning and Quantization for Low-latency Spiking Neural
  Networks
Spatio-Temporal Pruning and Quantization for Low-latency Spiking Neural Networks
Sayeed Shafayet Chowdhury
Isha Garg
Kaushik Roy
21
38
0
26 Apr 2021
Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
  Classification
Rank-R FNN: A Tensor-Based Learning Model for High-Order Data Classification
Konstantinos Makantasis
Alexandros Georgogiannis
A. Voulodimos
Ioannis Georgoulas
Anastasios Doulamis
N. Doulamis
26
21
0
11 Apr 2021
Tensor networks and efficient descriptions of classical data
Tensor networks and efficient descriptions of classical data
Sirui Lu
Márton Kanász-Nagy
I. Kukuljan
J. I. Cirac
24
24
0
11 Mar 2021
TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models
TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models
Chunxing Yin
Bilge Acun
Xing Liu
Carole-Jean Wu
50
102
0
25 Jan 2021
Tensor-Train Networks for Learning Predictive Modeling of
  Multidimensional Data
Tensor-Train Networks for Learning Predictive Modeling of Multidimensional Data
M. N. D. Costa
R. Attux
A. Cichocki
J. Romano
17
3
0
22 Jan 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
40
2
0
04 Jan 2021
Cross-Layer Distillation with Semantic Calibration
Cross-Layer Distillation with Semantic Calibration
Defang Chen
Jian-Ping Mei
Yuan Zhang
Can Wang
Yan Feng
Chun-Yen Chen
FedML
45
287
0
06 Dec 2020
Permute, Quantize, and Fine-tune: Efficient Compression of Neural
  Networks
Permute, Quantize, and Fine-tune: Efficient Compression of Neural Networks
Julieta Martinez
Jashan Shewakramani
Ting Liu
Ioan Andrei Bârsan
Wenyuan Zeng
R. Urtasun
MQ
23
30
0
29 Oct 2020
Tensor Train Random Projection
Tensor Train Random Projection
Yani Feng
Keju Tang
Lianxing He
Pingqiang Zhou
Qifeng Liao
18
3
0
21 Oct 2020
Block-term Tensor Neural Networks
Block-term Tensor Neural Networks
Jinmian Ye
Guangxi Li
Di Chen
Haiqin Yang
Shandian Zhe
Zenglin Xu
24
30
0
10 Oct 2020
Optimal High-order Tensor SVD via Tensor-Train Orthogonal Iteration
Optimal High-order Tensor SVD via Tensor-Train Orthogonal Iteration
Yuchen Zhou
Anru R. Zhang
Lili Zheng
Yazhen Wang
26
22
0
06 Oct 2020
Pruning Convolutional Filters using Batch Bridgeout
Pruning Convolutional Filters using Batch Bridgeout
Najeeb Khan
Ian Stavness
28
3
0
23 Sep 2020
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
36
79
0
17 Sep 2020
Transform Quantization for CNN (Convolutional Neural Network)
  Compression
Transform Quantization for CNN (Convolutional Neural Network) Compression
Sean I. Young
Wang Zhe
David S. Taubman
B. Girod
MQ
29
69
0
02 Sep 2020
Stable Low-rank Tensor Decomposition for Compression of Convolutional
  Neural Network
Stable Low-rank Tensor Decomposition for Compression of Convolutional Neural Network
Anh-Huy Phan
Konstantin Sobolev
Konstantin Sozykin
Dmitry Ermilov
Julia Gusak
P. Tichavský
Valeriy Glukhov
Ivan Oseledets
A. Cichocki
BDL
27
128
0
12 Aug 2020
Depth separation for reduced deep networks in nonlinear model reduction:
  Distilling shock waves in nonlinear hyperbolic problems
Depth separation for reduced deep networks in nonlinear model reduction: Distilling shock waves in nonlinear hyperbolic problems
Donsub Rim
Luca Venturi
Joan Bruna
Benjamin Peherstorfer
28
9
0
28 Jul 2020
Overcomplete order-3 tensor decomposition, blind deconvolution and
  Gaussian mixture models
Overcomplete order-3 tensor decomposition, blind deconvolution and Gaussian mixture models
Haolin Chen
Luis Rademacher
29
3
0
16 Jul 2020
T-Basis: a Compact Representation for Neural Networks
T-Basis: a Compact Representation for Neural Networks
Anton Obukhov
M. Rakhuba
Stamatios Georgoulis
Menelaos Kanakis
Dengxin Dai
Luc Van Gool
41
27
0
13 Jul 2020
An Overview of Neural Network Compression
An Overview of Neural Network Compression
James OÑeill
AI4CE
45
98
0
05 Jun 2020
Tensor decomposition to Compress Convolutional Layers in Deep Learning
Tensor decomposition to Compress Convolutional Layers in Deep Learning
Yinan Wang
W. Guo
Xiaowei Yue
6
15
0
28 May 2020
Convolutional Tensor-Train LSTM for Spatio-temporal Learning
Convolutional Tensor-Train LSTM for Spatio-temporal Learning
Jiahao Su
Wonmin Byeon
Jean Kossaifi
Furong Huang
Jan Kautz
Anima Anandkumar
AI4TS
19
119
0
21 Feb 2020
Tensor-to-Vector Regression for Multi-channel Speech Enhancement based
  on Tensor-Train Network
Tensor-to-Vector Regression for Multi-channel Speech Enhancement based on Tensor-Train Network
Jun Qi
Hu Hu
Yannan Wang
Chao-Han Huck Yang
Sabato Marco Siniscalchi
Chin-Hui Lee
3DV
6
21
0
03 Feb 2020
Compact recurrent neural networks for acoustic event detection on
  low-energy low-complexity platforms
Compact recurrent neural networks for acoustic event detection on low-energy low-complexity platforms
G. Cerutti
Rahul Prasad
Alessio Brutti
Elisabetta Farella
21
47
0
29 Jan 2020
Supervised Learning for Non-Sequential Data: A Canonical Polyadic
  Decomposition Approach
Supervised Learning for Non-Sequential Data: A Canonical Polyadic Decomposition Approach
A. Haliassos
Kriton Konstantinidis
Danilo P. Mandic
29
1
0
27 Jan 2020
Resource-Efficient Neural Networks for Embedded Systems
Resource-Efficient Neural Networks for Embedded Systems
Wolfgang Roth
Günther Schindler
Lukas Pfeifenberger
Robert Peharz
Sebastian Tschiatschek
Holger Fröning
Franz Pernkopf
Zoubin Ghahramani
34
47
0
07 Jan 2020
Sparse Weight Activation Training
Sparse Weight Activation Training
Md Aamir Raihan
Tor M. Aamodt
34
73
0
07 Jan 2020
Compositional Hierarchical Tensor Factorization: Representing
  Hierarchical Intrinsic and Extrinsic Causal Factors
Compositional Hierarchical Tensor Factorization: Representing Hierarchical Intrinsic and Extrinsic Causal Factors
M. Alex O. Vasilescu
E. Kim
CoGe
CVBM
23
12
0
11 Nov 2019
Training Neural Machine Translation (NMT) Models using Tensor Train
  Decomposition on TensorFlow (T3F)
Training Neural Machine Translation (NMT) Models using Tensor Train Decomposition on TensorFlow (T3F)
A. Drew
A. Heinecke
20
0
0
05 Nov 2019
Active Subspace of Neural Networks: Structural Analysis and Universal
  Attacks
Active Subspace of Neural Networks: Structural Analysis and Universal Attacks
Chunfeng Cui
Kaiqi Zhang
Talgat Daulbaev
Julia Gusak
Ivan Oseledets
Zheng-Wei Zhang
AAML
29
25
0
29 Oct 2019
Generative Neural Network based Spectrum Sharing using Linear Sum
  Assignment Problems
Generative Neural Network based Spectrum Sharing using Linear Sum Assignment Problems
A. B. Zaki
J. Huang
Kaishun Wu
B. Elhalawany
22
15
0
12 Oct 2019
Accurate and Compact Convolutional Neural Networks with Trained
  Binarization
Accurate and Compact Convolutional Neural Networks with Trained Binarization
Zhe Xu
R. Cheung
MQ
27
54
0
25 Sep 2019
Effective Training of Convolutional Neural Networks with Low-bitwidth
  Weights and Activations
Effective Training of Convolutional Neural Networks with Low-bitwidth Weights and Activations
Bohan Zhuang
Jing Liu
Mingkui Tan
Lingqiao Liu
Ian Reid
Chunhua Shen
MQ
29
45
0
10 Aug 2019
Recurrent Neural Networks: An Embedded Computing Perspective
Recurrent Neural Networks: An Embedded Computing Perspective
Nesma M. Rezk
M. Purnaprajna
Tomas Nordstrom
Z. Ul-Abdin
43
81
0
23 Jul 2019
Expressive power of tensor-network factorizations for probabilistic
  modeling, with applications from hidden Markov models to quantum machine
  learning
Expressive power of tensor-network factorizations for probabilistic modeling, with applications from hidden Markov models to quantum machine learning
I. Glasser
R. Sweke
Nicola Pancotti
Jens Eisert
J. I. Cirac
30
123
0
08 Jul 2019
Weight Normalization based Quantization for Deep Neural Network
  Compression
Weight Normalization based Quantization for Deep Neural Network Compression
Wenhong Cai
Wu-Jun Li
18
14
0
01 Jul 2019
Brain correlates of task-load and dementia elucidation with tensor
  machine learning using oddball BCI paradigm
Brain correlates of task-load and dementia elucidation with tensor machine learning using oddball BCI paradigm
Tomasz M. Rutkowski
M. Koculak
M. S. Abe
M. Otake-Matsuura
17
14
0
19 Jun 2019
Exploring Interpretable LSTM Neural Networks over Multi-Variable Data
Exploring Interpretable LSTM Neural Networks over Multi-Variable Data
Tian Guo
Tao R. Lin
Nino Antulov-Fantulin
AI4TS
26
154
0
28 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
32
14
0
27 May 2019
Bayesian Tensorized Neural Networks with Automatic Rank Selection
Bayesian Tensorized Neural Networks with Automatic Rank Selection
Cole Hawkins
Zheng-Wei Zhang
BDL
25
52
0
24 May 2019
Training CNNs with Selective Allocation of Channels
Training CNNs with Selective Allocation of Channels
Jongheon Jeong
Jinwoo Shin
CVBM
39
15
0
11 May 2019
T-Net: Parametrizing Fully Convolutional Nets with a Single High-Order
  Tensor
T-Net: Parametrizing Fully Convolutional Nets with a Single High-Order Tensor
Jean Kossaifi
Adrian Bulat
Georgios Tzimiropoulos
M. Pantic
22
67
0
04 Apr 2019
Learning Mixtures of Separable Dictionaries for Tensor Data: Analysis
  and Algorithms
Learning Mixtures of Separable Dictionaries for Tensor Data: Analysis and Algorithms
Mohsen Ghassemi
Z. Shakeri
Anand D. Sarwate
W. Bajwa
22
16
0
22 Mar 2019
Previous
123
Next