ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.06470
  4. Cited By
Understand Scene Categories by Objects: A Semantic Regularized Scene
  Classifier Using Convolutional Neural Networks

Understand Scene Categories by Objects: A Semantic Regularized Scene Classifier Using Convolutional Neural Networks

22 September 2015
Yiyi Liao
S. Kodagoda
Yue Wang
Lei Shi
Yang Liu
ArXivPDFHTML

Papers citing "Understand Scene Categories by Objects: A Semantic Regularized Scene Classifier Using Convolutional Neural Networks"

10 / 10 papers shown
Title
Multi-task Learning with Coarse Priors for Robust Part-aware Person
  Re-identification
Multi-task Learning with Coarse Priors for Robust Part-aware Person Re-identification
Changxing Ding
Kan Wang
Pengfei Wang
Dacheng Tao
65
63
0
18 Mar 2020
A Survey of Deep Network Solutions for Learning Control in Robotics:
  From Reinforcement to Imitation
A Survey of Deep Network Solutions for Learning Control in Robotics: From Reinforcement to Imitation
L. Tai
Jingwei Zhang
Ming-Yuan Liu
Joschka Boedecker
Wolfram Burgard
OffRL
89
78
0
21 Dec 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
725
37,843
0
20 May 2016
Object Detectors Emerge in Deep Scene CNNs
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
135
1,283
0
22 Dec 2014
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object
  Detection
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
Wanli Ouyang
Xiaogang Wang
Xingyu Zeng
Shi Qiu
Ping Luo
...
Hongsheng Li
Shuo Yang
Zhe Wang
Chen Change Loy
Xiaoou Tang
ObjD
70
437
0
17 Dec 2014
Learning Rich Features from RGB-D Images for Object Detection and
  Segmentation
Learning Rich Features from RGB-D Images for Object Detection and Segmentation
Saurabh Gupta
Ross B. Girshick
Pablo Arbeláez
Jitendra Malik
ObjD
116
1,561
0
22 Jul 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
271
14,707
0
20 Jun 2014
CNN Features off-the-shelf: an Astounding Baseline for Recognition
CNN Features off-the-shelf: an Astounding Baseline for Recognition
A. Razavian
Hossein Azizpour
Josephine Sullivan
S. Carlsson
151
4,939
0
23 Mar 2014
DeCAF: A Deep Convolutional Activation Feature for Generic Visual
  Recognition
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
VLM
ObjD
178
4,949
0
06 Oct 2013
Indoor Semantic Segmentation using depth information
Indoor Semantic Segmentation using depth information
Camille Couprie
C. Farabet
Laurent Najman
Yann LeCun
SSeg
MDE
137
481
0
16 Jan 2013
1