ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.05305
  4. Cited By
Boosting Bayesian Parameter Inference of Nonlinear Stochastic
  Differential Equation Models by Hamiltonian Scale Separation
v1v2 (latest)

Boosting Bayesian Parameter Inference of Nonlinear Stochastic Differential Equation Models by Hamiltonian Scale Separation

17 September 2015
Carlo Albert
S. Ulzega
R. Stoop
ArXiv (abs)PDFHTML

Papers citing "Boosting Bayesian Parameter Inference of Nonlinear Stochastic Differential Equation Models by Hamiltonian Scale Separation"

1 / 1 papers shown
Title
SPUX Framework: a Scalable Package for Bayesian Uncertainty
  Quantification and Propagation
SPUX Framework: a Scalable Package for Bayesian Uncertainty Quantification and Propagation
Jonas vSukys
Marco Bacci
52
2
0
12 May 2021
1