ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1508.04319
  4. Cited By
Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo

Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo

18 August 2015
Markus Heinonen
Henrik Mannerstrom
Juho Rousu
Samuel Kaski
Harri Lähdesmäki
ArXivPDFHTML

Papers citing "Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo"

12 / 12 papers shown
Title
Improving Random Forests by Smoothing
Improving Random Forests by Smoothing
Ziyi Liu
Phuc Luong
Mario Boley
Daniel F. Schmidt
UQCV
37
0
0
11 May 2025
Non-stationary and Sparsely-correlated Multi-output Gaussian Process
  with Spike-and-Slab Prior
Non-stationary and Sparsely-correlated Multi-output Gaussian Process with Spike-and-Slab Prior
Wang Xinming
Li Yongxiang
Yue Xiaowei
Wu Jianguo
24
0
0
05 Sep 2024
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
27
75
0
07 May 2023
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
19
3
0
04 Aug 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
17
6
0
30 May 2022
Accurate Remaining Useful Life Prediction with Uncertainty
  Quantification: a Deep Learning and Nonstationary Gaussian Process Approach
Accurate Remaining Useful Life Prediction with Uncertainty Quantification: a Deep Learning and Nonstationary Gaussian Process Approach
Zhaoyi Xu
Yanjie Guo
J. Saleh
17
25
0
23 Sep 2021
Deep State-Space Gaussian Processes
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
30
19
0
11 Aug 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
13
60
0
17 May 2020
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
14
9
0
27 Nov 2018
Posterior Inference for Sparse Hierarchical Non-stationary Models
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
19
26
0
04 Apr 2018
Deep Gaussian Covariance Network
Deep Gaussian Covariance Network
K. Cremanns
D. Roos
BDL
16
20
0
17 Oct 2017
Estimating deformations of isotropic Gaussian random fields on the plane
Estimating deformations of isotropic Gaussian random fields on the plane
E. Anderes
Michael L. Stein
165
91
0
04 Apr 2008
1