Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1508.02087
Cited By
A Linearly-Convergent Stochastic L-BFGS Algorithm
9 August 2015
Philipp Moritz
Robert Nishihara
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Linearly-Convergent Stochastic L-BFGS Algorithm"
30 / 30 papers shown
Title
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
36
0
0
28 Jan 2025
Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients
Sachin Garg
A. Berahas
Michal Dereziñski
46
1
0
23 Apr 2024
Online Learning Under A Separable Stochastic Approximation Framework
Min Gan
Xiang-Xiang Su
Guang-yong Chen
Jing Chen
28
0
0
12 May 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
46
6
0
02 Jan 2023
Stochastic Steffensen method
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
15
3
0
28 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
48
102
0
15 Nov 2022
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques as Second Order Information
Hardik Tankaria
N. Yamashita
13
1
0
23 Aug 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
29
2
0
17 Jul 2022
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
26
13
0
17 Jul 2022
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
32
6
0
20 Jun 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
55
5
0
06 Jun 2022
Estimation and Inference by Stochastic Optimization
Jean-Jacques Forneron
35
5
0
06 May 2022
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized Learning: Part I
Jiaojiao Zhang
Huikang Liu
Anthony Man-Cho So
Qing Ling
24
14
0
19 Jan 2022
Nys-Newton: Nyström-Approximated Curvature for Stochastic Optimization
Dinesh Singh
Hardik Tankaria
M. Yamada
ODL
42
2
0
16 Oct 2021
Learning the Step-size Policy for the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm
Lucas N. Egidio
A. Hansson
B. Wahlberg
19
12
0
03 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
37
0
0
26 Aug 2020
Training (Overparametrized) Neural Networks in Near-Linear Time
Jan van den Brand
Binghui Peng
Zhao Song
Omri Weinstein
ODL
29
82
0
20 Jun 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
37
49
0
16 Jun 2020
Practical Quasi-Newton Methods for Training Deep Neural Networks
D. Goldfarb
Yi Ren
Achraf Bahamou
ODL
10
104
0
16 Jun 2020
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
29
326
0
22 Feb 2020
A fast quasi-Newton-type method for large-scale stochastic optimisation
A. Wills
Carl Jidling
Thomas B. Schon
ODL
31
7
0
29 Sep 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
33
703
0
26 Feb 2018
An inexact subsampled proximal Newton-type method for large-scale machine learning
Xuanqing Liu
Cho-Jui Hsieh
J. Lee
Yuekai Sun
32
15
0
28 Aug 2017
Diving into the shallows: a computational perspective on large-scale shallow learning
Siyuan Ma
M. Belkin
32
76
0
30 Mar 2017
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
69
1,878
0
08 Oct 2016
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
31
13
0
04 Oct 2016
Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization
Tianlin Li
Shiqian Ma
D. Goldfarb
Wei Liu
24
177
0
05 Jul 2016
Predictive Coarse-Graining
M. Schöberl
N. Zabaras
P. Koutsourelakis
17
34
0
26 May 2016
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari
Alejandro Ribeiro
ODL
17
32
0
24 May 2016
Kalman-based Stochastic Gradient Method with Stop Condition and Insensitivity to Conditioning
V. Patel
23
35
0
03 Dec 2015
1