ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.02293
  4. Cited By
COEVOLVE: A Joint Point Process Model for Information Diffusion and
  Network Co-evolution

COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution

8 July 2015
Mehrdad Farajtabar
Yichen Wang
Manuel Gomez Rodriguez
Shuang Li
H. Zha
Le Song
ArXivPDFHTML

Papers citing "COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution"

20 / 20 papers shown
Title
Dynamic Healthcare Embeddings for Improving Patient Care
Dynamic Healthcare Embeddings for Improving Patient Care
Hankyu Jang
Sulyun Lee
D. M. H. Hasan
P. Polgreen
Sriram V. Pemmaraju
Interdisciplinary Graduate Program in Informatics
AI4TS
13
2
0
21 Mar 2023
How News Evolves? Modeling News Text and Coverage using Graphs and
  Hawkes Process
How News Evolves? Modeling News Text and Coverage using Graphs and Hawkes Process
Honggen Zhang
June Zhang
18
0
0
18 Nov 2021
Counterfactual Temporal Point Processes
Counterfactual Temporal Point Processes
Kimia Noorbakhsh
Manuel Gomez Rodriguez
22
22
0
15 Nov 2021
Multi-Relation Aware Temporal Interaction Network Embedding
Multi-Relation Aware Temporal Interaction Network Embedding
Ling Chen
Shanshan Yu
Dandan Lyu
Da Wang
AI4TS
25
1
0
09 Oct 2021
Learning Multivariate Hawkes Processes at Scale
Learning Multivariate Hawkes Processes at Scale
Maximilian Nickel
Matt Le
32
17
0
28 Feb 2020
Temporal Network Embedding with Micro- and Macro-dynamics
Temporal Network Embedding with Micro- and Macro-dynamics
Yuanfu Lu
Tianlin Li
C. Shi
Philip S. Yu
Yanfang Ye
AI4TS
AI4CE
11
117
0
10 Sep 2019
Neural Jump Stochastic Differential Equations
Neural Jump Stochastic Differential Equations
J. Jia
Austin R. Benson
BDL
20
222
0
24 May 2019
Inferring Multiplex Diffusion Network via Multivariate Marked Hawkes
  Process
Inferring Multiplex Diffusion Network via Multivariate Marked Hawkes Process
Peiyuan Suny
Jianxin Li
Yongyi Mao
Richong Zhang
Lihong Wang
15
5
0
24 Aug 2018
A hierarchical model of non-homogeneous Poisson processes for Twitter
  retweets
A hierarchical model of non-homogeneous Poisson processes for Twitter retweets
Clement Lee
D. Wilkinson
16
19
0
06 Feb 2018
Learning Deep Mean Field Games for Modeling Large Population Behavior
Learning Deep Mean Field Games for Modeling Large Population Behavior
Jiachen Yang
X. Ye
Rakshit S. Trivedi
Huan Xu
H. Zha
AI4CE
14
33
0
08 Nov 2017
Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs
Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs
Rakshit S. Trivedi
H. Dai
Yichen Wang
Le Song
BDL
21
472
0
16 May 2017
Joint Modeling of Event Sequence and Time Series with Attentional Twin
  Recurrent Neural Networks
Joint Modeling of Event Sequence and Time Series with Attentional Twin Recurrent Neural Networks
Shuai Xiao
Junchi Yan
Mehrdad Farajtabar
Le Song
Xiaokang Yang
H. Zha
AI4TS
18
44
0
24 Mar 2017
Cheshire: An Online Algorithm for Activity Maximization in Social
  Networks
Cheshire: An Online Algorithm for Activity Maximization in Social Networks
Ali Zarezade
A. De
Hamid R. Rabiee
Manuel Gomez Rodriguez
11
12
0
06 Mar 2017
Recurrent Poisson Factorization for Temporal Recommendation
Recurrent Poisson Factorization for Temporal Recommendation
Seyed Abbas Hosseini
Keivan Alizadeh-Vahid
Ali Khodadadi
A. Arabzadeh
Mehrdad Farajtabar
H. Zha
Hamid R. Rabiee
14
56
0
04 Mar 2017
Variational Policy for Guiding Point Processes
Variational Policy for Guiding Point Processes
Yichen Wang
Grady Williams
Evangelos Theodorou
Le Song
27
23
0
30 Jan 2017
Uncovering Causality from Multivariate Hawkes Integrated Cumulants
Uncovering Causality from Multivariate Hawkes Integrated Cumulants
M. Achab
Emmanuel Bacry
Stéphane Gaïffas
I. Mastromatteo
Jean-François Muzy
46
90
0
21 Jul 2016
Smart broadcasting: Do you want to be seen?
Smart broadcasting: Do you want to be seen?
M. Karimi
Erfan Tavakoli
Mehrdad Farajtabar
Le Song
Manuel Gomez Rodriguez
8
39
0
22 May 2016
Detecting weak changes in dynamic events over networks
Detecting weak changes in dynamic events over networks
Shuang Li
Yao Xie
Mehrdad Farajtabar
Apurv Verma
Le Song
11
9
0
29 Mar 2016
The Bursty Dynamics of the Twitter Information Network
The Bursty Dynamics of the Twitter Information Network
Seth A. Myers
J. Leskovec
32
227
0
11 Mar 2014
A survey of statistical network models
A survey of statistical network models
Anna Goldenberg
A. Zheng
S. Fienberg
E. Airoldi
131
976
0
29 Dec 2009
1