ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.01037
  4. Cited By
I-LAMM for Sparse Learning: Simultaneous Control of Algorithmic
  Complexity and Statistical Error

I-LAMM for Sparse Learning: Simultaneous Control of Algorithmic Complexity and Statistical Error

3 July 2015
Jianqing Fan
Han Liu
Qiang Sun
Tong Zhang
ArXivPDFHTML

Papers citing "I-LAMM for Sparse Learning: Simultaneous Control of Algorithmic Complexity and Statistical Error"

17 / 17 papers shown
Title
Estimation of sparse linear regression coefficients under
  $L$-subexponential covariates
Estimation of sparse linear regression coefficients under LLL-subexponential covariates
Takeyuki Sasai
28
0
0
24 Apr 2023
Online Linearized LASSO
Online Linearized LASSO
Shuoguang Yang
Yuhao Yan
Xiuneng Zhu
Qiang Sun
16
3
0
11 Nov 2022
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Takeyuki Sasai
Hironori Fujisawa
30
4
0
24 Aug 2022
Robust and Sparse Estimation of Linear Regression Coefficients with
  Heavy-tailed Noises and Covariates
Robust and Sparse Estimation of Linear Regression Coefficients with Heavy-tailed Noises and Covariates
Takeyuki Sasai
23
4
0
15 Jun 2022
A Unified Algorithm for Penalized Convolution Smoothed Quantile
  Regression
A Unified Algorithm for Penalized Convolution Smoothed Quantile Regression
Rebeka Man
Xiaoou Pan
Kean Ming Tan
Wen-Xin Zhou
29
13
0
05 May 2022
Markov subsampling based Huber Criterion
Markov subsampling based Huber Criterion
Tieliang Gong
Yuxin Dong
Hong Chen
B. Dong
Chen Li
16
2
0
12 Dec 2021
High-Dimensional Quantile Regression: Convolution Smoothing and Concave
  Regularization
High-Dimensional Quantile Regression: Convolution Smoothing and Concave Regularization
Kean Ming Tan
Lan Wang
Wen-Xin Zhou
29
56
0
12 Sep 2021
Do we need to estimate the variance in robust mean estimation?
Do we need to estimate the variance in robust mean estimation?
Qiang Sun
OOD
24
7
0
30 Jun 2021
Support estimation in high-dimensional heteroscedastic mean regression
Support estimation in high-dimensional heteroscedastic mean regression
P. Hermann
H. Holzmann
31
0
0
03 Nov 2020
Best subset selection is robust against design dependence
Best subset selection is robust against design dependence
Yongyi Guo
Ziwei Zhu
Jianqing Fan
13
7
0
03 Jul 2020
Does the $\ell_1$-norm Learn a Sparse Graph under Laplacian Constrained
  Graphical Models?
Does the ℓ1\ell_1ℓ1​-norm Learn a Sparse Graph under Laplacian Constrained Graphical Models?
Jiaxi Ying
J. Cardoso
Daniel P. Palomar
8
10
0
26 Jun 2020
Estimating the Number of Components in Finite Mixture Models via the
  Group-Sort-Fuse Procedure
Estimating the Number of Components in Finite Mixture Models via the Group-Sort-Fuse Procedure
Tudor Manole
Abbas Khalili
27
19
0
24 May 2020
Resampling-based Confidence Intervals for Model-free Robust Inference on
  Optimal Treatment Regimes
Resampling-based Confidence Intervals for Model-free Robust Inference on Optimal Treatment Regimes
Y. Wu
Lan Wang
13
9
0
25 Nov 2019
Robust Inference via Multiplier Bootstrap
Robust Inference via Multiplier Bootstrap
Xi Chen
Wen-Xin Zhou
27
31
0
18 Mar 2019
Robust Sparse Reduced Rank Regression in High Dimensions
Robust Sparse Reduced Rank Regression in High Dimensions
Kean Ming Tan
Qiang Sun
Daniela Witten
23
3
0
18 Oct 2018
A New Perspective on Robust $M$-Estimation: Finite Sample Theory and
  Applications to Dependence-Adjusted Multiple Testing
A New Perspective on Robust MMM-Estimation: Finite Sample Theory and Applications to Dependence-Adjusted Multiple Testing
Wen-Xin Zhou
K. Bose
Jianqing Fan
Han Liu
19
62
0
15 Nov 2017
Adaptive Huber Regression
Adaptive Huber Regression
Qiang Sun
Wen-Xin Zhou
Jianqing Fan
48
277
0
21 Jun 2017
1