ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.00500
  4. Cited By
Non-convex Regularizations for Feature Selection in Ranking With Sparse
  SVM

Non-convex Regularizations for Feature Selection in Ranking With Sparse SVM

2 July 2015
Léa Laporte
Rémi Flamary
S. Canu
Sébastien Déjean
Josiane Mothe
ArXivPDFHTML

Papers citing "Non-convex Regularizations for Feature Selection in Ranking With Sparse SVM"

4 / 4 papers shown
Title
Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection
Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection
Yanyong Huang
Li Yang
Dongjie Wang
Ke Li
Xiuwen Yi
Fengmao Lv
Tianrui Li
33
0
0
18 Jun 2024
Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
  Random Fields
Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields
Tatsuya Koyakumaru
M. Yukawa
Eduardo Pavez
Antonio Ortega
27
8
0
17 Sep 2021
Quantitative robustness of instance ranking problems
Quantitative robustness of instance ranking problems
Tino Werner
24
2
0
12 Mar 2021
An Efficient ADMM-Based Algorithm to Nonconvex Penalized Support Vector
  Machines
An Efficient ADMM-Based Algorithm to Nonconvex Penalized Support Vector Machines
Lei Guan
Linbo Qiao
Dongsheng Li
Tao Sun
Ke-shi Ge
Xicheng Lu
36
14
0
11 Sep 2018
1