Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.08272
Cited By
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
27 June 2015
Xiangru Lian
Yijun Huang
Y. Li
Ji Liu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization"
38 / 88 papers shown
Title
Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent
Shuheng Shen
Linli Xu
Jingchang Liu
Xianfeng Liang
Yifei Cheng
ODL
FedML
29
24
0
28 Jun 2019
Fully Decoupled Neural Network Learning Using Delayed Gradients
Huiping Zhuang
Yi Wang
Qinglai Liu
Shuai Zhang
Zhiping Lin
FedML
14
29
0
21 Jun 2019
Layered SGD: A Decentralized and Synchronous SGD Algorithm for Scalable Deep Neural Network Training
K. Yu
Thomas Flynn
Shinjae Yoo
N. DÍmperio
OffRL
19
6
0
13 Jun 2019
Bandwidth Reduction using Importance Weighted Pruning on Ring AllReduce
Zehua Cheng
Zhenghua Xu
19
8
0
06 Jan 2019
Asynchronous Stochastic Composition Optimization with Variance Reduction
Shuheng Shen
Linli Xu
Jingchang Liu
Junliang Guo
Qing Ling
8
2
0
15 Nov 2018
MD-GAN: Multi-Discriminator Generative Adversarial Networks for Distributed Datasets
Corentin Hardy
Erwan Le Merrer
B. Sericola
GAN
27
181
0
09 Nov 2018
Toward Understanding the Impact of Staleness in Distributed Machine Learning
Wei-Ming Dai
Yi Zhou
Nanqing Dong
Huan Zhang
Eric P. Xing
22
80
0
08 Oct 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
33
348
0
22 Aug 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
22
38
0
31 May 2018
Double Quantization for Communication-Efficient Distributed Optimization
Yue Yu
Jiaxiang Wu
Longbo Huang
MQ
19
57
0
25 May 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
31
297
0
25 May 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
79
1,044
0
24 May 2018
Taming Convergence for Asynchronous Stochastic Gradient Descent with Unbounded Delay in Non-Convex Learning
Xin Zhang
Jia-Wei Liu
Zhengyuan Zhu
16
17
0
24 May 2018
Tell Me Something New: A New Framework for Asynchronous Parallel Learning
Julaiti Alafate
Y. Freund
FedML
11
2
0
19 May 2018
Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization
G. Scutari
Ying Sun
35
61
0
17 May 2018
Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD
Sanghamitra Dutta
Gauri Joshi
Soumyadip Ghosh
Parijat Dube
P. Nagpurkar
31
193
0
03 Mar 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
33
702
0
26 Feb 2018
Asynchronous Stochastic Proximal Methods for Nonconvex Nonsmooth Optimization
Rui Zhu
Di Niu
Zongpeng Li
16
4
0
24 Feb 2018
SparCML: High-Performance Sparse Communication for Machine Learning
Cédric Renggli
Saleh Ashkboos
Mehdi Aghagolzadeh
Dan Alistarh
Torsten Hoefler
29
126
0
22 Feb 2018
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
16
70
0
11 Jan 2018
Efficient Training of Convolutional Neural Nets on Large Distributed Systems
Sameer Kumar
D. Sreedhar
Vaibhav Saxena
Yogish Sabharwal
Ashish Verma
35
4
0
02 Nov 2017
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
15
522
0
26 Oct 2017
Convergence Analysis of Distributed Stochastic Gradient Descent with Shuffling
Qi Meng
Wei-neng Chen
Yue Wang
Zhi-Ming Ma
Tie-Yan Liu
FedML
18
101
0
29 Sep 2017
What does fault tolerant Deep Learning need from MPI?
Vinay C. Amatya
Abhinav Vishnu
Charles Siegel
J. Daily
28
19
0
11 Sep 2017
On the convergence properties of a
K
K
K
-step averaging stochastic gradient descent algorithm for nonconvex optimization
Fan Zhou
Guojing Cong
46
232
0
03 Aug 2017
Byzantine-Tolerant Machine Learning
Peva Blanchard
El-Mahdi El-Mhamdi
R. Guerraoui
J. Stainer
OOD
FedML
24
70
0
08 Mar 2017
A Generic Online Parallel Learning Framework for Large Margin Models
Shuming Ma
Xu Sun
FedML
13
2
0
02 Mar 2017
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
23
10
0
29 Oct 2016
Asynchronous Stochastic Gradient Descent with Delay Compensation
Shuxin Zheng
Qi Meng
Taifeng Wang
Wei Chen
Nenghai Yu
Zhiming Ma
Tie-Yan Liu
29
312
0
27 Sep 2016
AdaNet: Adaptive Structural Learning of Artificial Neural Networks
Corinna Cortes
X. Gonzalvo
Vitaly Kuznetsov
M. Mohri
Scott Yang
29
282
0
05 Jul 2016
Parallel SGD: When does averaging help?
Jian Zhang
Christopher De Sa
Ioannis Mitliagkas
Christopher Ré
MoMe
FedML
54
109
0
23 Jun 2016
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
AI4TS
29
101
0
15 Jun 2016
Omnivore: An Optimizer for Multi-device Deep Learning on CPUs and GPUs
Stefan Hadjis
Ce Zhang
Ioannis Mitliagkas
Dan Iter
Christopher Ré
20
65
0
14 Jun 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
29
62
0
29 May 2016
DeepSpark: A Spark-Based Distributed Deep Learning Framework for Commodity Clusters
Hanjoo Kim
Jaehong Park
Jaehee Jang
Sungroh Yoon
BDL
32
37
0
26 Feb 2016
Variance Reduction in SGD by Distributed Importance Sampling
Guillaume Alain
Alex Lamb
Chinnadhurai Sankar
Aaron Courville
Yoshua Bengio
FedML
13
196
0
20 Nov 2015
Model Accuracy and Runtime Tradeoff in Distributed Deep Learning:A Systematic Study
Suyog Gupta
Wei Zhang
Fei Wang
9
170
0
14 Sep 2015
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
179
683
0
07 Dec 2010
Previous
1
2