Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.06438
Cited By
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms
22 June 2015
Christopher De Sa
Ce Zhang
K. Olukotun
Christopher Ré
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms"
33 / 33 papers shown
Title
Distributed Extra-gradient with Optimal Complexity and Communication Guarantees
Ali Ramezani-Kebrya
Kimon Antonakopoulos
Igor Krawczuk
Justin Deschenaux
V. Cevher
36
3
0
17 Aug 2023
Convergence and Privacy of Decentralized Nonconvex Optimization with Gradient Clipping and Communication Compression
Boyue Li
Yuejie Chi
21
12
0
17 May 2023
Considerations on the Theory of Training Models with Differential Privacy
Marten van Dijk
Phuong Ha Nguyen
FedML
31
2
0
08 Mar 2023
Quantization-Based Optimization: Alternative Stochastic Approximation of Global Optimization
Jinwuk Seok
Changhun Cho
16
2
0
08 Nov 2022
MiCS: Near-linear Scaling for Training Gigantic Model on Public Cloud
Zhen Zhang
Shuai Zheng
Yida Wang
Justin Chiu
George Karypis
Trishul Chilimbi
Mu Li
Xin Jin
19
39
0
30 Apr 2022
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
19
1
0
30 Sep 2021
An optical neural network using less than 1 photon per multiplication
Tianyu Wang
Shifan Ma
Logan G. Wright
Tatsuhiro Onodera
Brian C. Richard
Peter L. McMahon
50
177
0
27 Apr 2021
DataLens: Scalable Privacy Preserving Training via Gradient Compression and Aggregation
Wei Ping
Fan Wu
Yunhui Long
Luka Rimanic
Ce Zhang
Bo-wen Li
FedML
45
63
0
20 Mar 2021
Consistent Lock-free Parallel Stochastic Gradient Descent for Fast and Stable Convergence
Karl Bäckström
Ivan Walulya
Marina Papatriantafilou
P. Tsigas
29
5
0
17 Feb 2021
Integrating Deep Learning in Domain Sciences at Exascale
Rick Archibald
E. Chow
E. DÁzevedo
Jack J. Dongarra
M. Eisenbach
...
Florent Lopez
Daniel Nichols
S. Tomov
Kwai Wong
Junqi Yin
PINN
23
5
0
23 Nov 2020
Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
FedML
42
10
0
27 Oct 2020
Where Is the Normative Proof? Assumptions and Contradictions in ML Fairness Research
A. Feder Cooper
10
7
0
20 Oct 2020
Multi-Precision Policy Enforced Training (MuPPET): A precision-switching strategy for quantised fixed-point training of CNNs
A. Rajagopal
D. A. Vink
Stylianos I. Venieris
C. Bouganis
MQ
16
14
0
16 Jun 2020
MixML: A Unified Analysis of Weakly Consistent Parallel Learning
Yucheng Lu
J. Nash
Christopher De Sa
FedML
32
12
0
14 May 2020
On-Device Machine Learning: An Algorithms and Learning Theory Perspective
Sauptik Dhar
Junyao Guo
Jiayi Liu
S. Tripathi
Unmesh Kurup
Mohak Shah
28
141
0
02 Nov 2019
JSDoop and TensorFlow.js: Volunteer Distributed Web Browser-Based Neural Network Training
José Á. Morell
Andrés Camero
Enrique Alba
26
9
0
12 Oct 2019
Quantized Frank-Wolfe: Faster Optimization, Lower Communication, and Projection Free
Mingrui Zhang
Lin Chen
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
16
8
0
17 Feb 2019
HOGWILD!-Gibbs can be PanAccurate
C. Daskalakis
Nishanth Dikkala
S. Jayanti
16
13
0
26 Nov 2018
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
23
66
0
10 Nov 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
79
1,044
0
24 May 2018
Eigenvector Computation and Community Detection in Asynchronous Gossip Models
Frederik Mallmann-Trenn
Cameron Musco
Christopher Musco
23
9
0
23 Apr 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
33
702
0
26 Feb 2018
SparCML: High-Performance Sparse Communication for Machine Learning
Cédric Renggli
Saleh Ashkboos
Mehdi Aghagolzadeh
Dan Alistarh
Torsten Hoefler
29
126
0
22 Feb 2018
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption
Lam M. Nguyen
Phuong Ha Nguyen
Marten van Dijk
Peter Richtárik
K. Scheinberg
Martin Takáč
33
226
0
11 Feb 2018
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
16
70
0
11 Jan 2018
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
15
522
0
26 Oct 2017
GPU-acceleration for Large-scale Tree Boosting
Huan Zhang
Si Si
Cho-Jui Hsieh
16
80
0
26 Jun 2017
Exploring the Design Space of Deep Convolutional Neural Networks at Large Scale
F. Iandola
3DV
26
18
0
20 Dec 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
66
1,878
0
08 Oct 2016
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
AI4TS
29
101
0
15 Jun 2016
Fast Zero-Shot Image Tagging
Yang Zhang
Boqing Gong
M. Shah
VLM
3DV
19
141
0
31 May 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
29
62
0
29 May 2016
Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling
Christopher De Sa
K. Olukotun
Christopher Ré
16
51
0
24 Feb 2016
1