ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.04778
  4. Cited By
Fast sampling with Gaussian scale-mixture priors in high-dimensional
  regression

Fast sampling with Gaussian scale-mixture priors in high-dimensional regression

15 June 2015
A. Bhattacharya
Antik Chakraborty
Bani Mallick
ArXivPDFHTML

Papers citing "Fast sampling with Gaussian scale-mixture priors in high-dimensional regression"

13 / 13 papers shown
Title
Sparse Horseshoe Estimation via Expectation-Maximisation
Sparse Horseshoe Estimation via Expectation-Maximisation
Shu Yu Tew
Daniel F. Schmidt
E. Makalic
20
2
0
07 Nov 2022
Lossy compression of matrices by black-box optimisation of mixed integer
  nonlinear programming
Lossy compression of matrices by black-box optimisation of mixed integer nonlinear programming
T. Kadowaki
Mitsuru Ambai
28
7
0
22 Apr 2022
Scalable Spike-and-Slab
Scalable Spike-and-Slab
N. Biswas
Lester W. Mackey
Xiao-Li Meng
GP
35
11
0
04 Apr 2022
Bounding Wasserstein distance with couplings
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
30
8
0
06 Dec 2021
Sparse Linear Mixed Model Selection via Streamlined Variational Bayes
Sparse Linear Mixed Model Selection via Streamlined Variational Bayes
Emanuele Degani
Luca Maestrini
Dorota Toczydlowska
M. Wand
22
1
0
13 Oct 2021
Subset selection for linear mixed models
Subset selection for linear mixed models
Daniel R. Kowal
20
3
0
27 Jul 2021
Simultaneous Transformation and Rounding (STAR) Models for
  Integer-Valued Data
Simultaneous Transformation and Rounding (STAR) Models for Integer-Valued Data
Daniel R. Kowal
A. Canale
SyDa
23
18
0
27 Jun 2019
Fast Markov chain Monte Carlo for high dimensional Bayesian regression
  models with shrinkage priors
Fast Markov chain Monte Carlo for high dimensional Bayesian regression models with shrinkage priors
Rui Jin
Aixin Tan
27
8
0
16 Mar 2019
Bayesian Optimization of Combinatorial Structures
Bayesian Optimization of Combinatorial Structures
Ricardo Baptista
Matthias Poloczek
22
135
0
22 Jun 2018
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a
  Scalable MCMC Algorithm for the Horseshoe Prior
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a Scalable MCMC Algorithm for the Horseshoe Prior
J. Johndrow
Paulo Orenstein
A. Bhattacharya
34
23
0
02 May 2017
Bayesian sparse multiple regression for simultaneous rank reduction and
  variable selection
Bayesian sparse multiple regression for simultaneous rank reduction and variable selection
Antik Chakraborty
A. Bhattacharya
Bani Mallick
28
26
0
02 Dec 2016
Uncertainty quantification for the horseshoe
Uncertainty quantification for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
33
72
0
07 Jul 2016
Locally adaptive factor processes for multivariate time series
Locally adaptive factor processes for multivariate time series
Daniele Durante
B. Scarpa
David B. Dunson
AI4TS
83
37
0
07 Oct 2012
1