ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02785
  4. Cited By
On the Error of Random Fourier Features

On the Error of Random Fourier Features

9 June 2015
Danica J. Sutherland
J. Schneider
ArXivPDFHTML

Papers citing "On the Error of Random Fourier Features"

31 / 31 papers shown
Title
Random feature-based double Vovk-Azoury-Warmuth algorithm for online multi-kernel learning
Random feature-based double Vovk-Azoury-Warmuth algorithm for online multi-kernel learning
Dmitry B. Rokhlin
Olga V. Gurtovaya
46
0
0
25 Mar 2025
Fast Summation of Radial Kernels via QMC Slicing
Fast Summation of Radial Kernels via QMC Slicing
Johannes Hertrich
Tim Jahn
Michael Quellmalz
26
5
0
02 Oct 2024
Optimal Kernel Quantile Learning with Random Features
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
42
0
0
24 Aug 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
43
2
0
28 May 2024
Dynamic Online Ensembles of Basis Expansions
Dynamic Online Ensembles of Basis Expansions
Daniel Waxman
Petar M. Djurić
40
3
0
02 May 2024
Potential and limitations of random Fourier features for dequantizing quantum machine learning
Potential and limitations of random Fourier features for dequantizing quantum machine learning
R. Sweke
Erik Recio
Sofiene Jerbi
Elies Gil-Fuster
Bryce Fuller
Jens Eisert
Johannes Jakob Meyer
27
12
0
20 Sep 2023
FAVOR#: Sharp Attention Kernel Approximations via New Classes of
  Positive Random Features
FAVOR#: Sharp Attention Kernel Approximations via New Classes of Positive Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
18
3
0
01 Feb 2023
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Carles Domingo-Enrich
Raaz Dwivedi
Lester W. Mackey
38
9
0
14 Jan 2023
Provably Reliable Large-Scale Sampling from Gaussian Processes
Provably Reliable Large-Scale Sampling from Gaussian Processes
Anthony Stephenson
Robert Allison
Edward O. Pyzer-Knapp
21
2
0
15 Nov 2022
On The Relative Error of Random Fourier Features for Preserving Kernel
  Distance
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
38
1
0
01 Oct 2022
Random Fourier Features for Asymmetric Kernels
Random Fourier Features for Asymmetric Kernels
Ming-qian He
Fan He
Fanghui Liu
Xiaolin Huang
25
3
0
18 Sep 2022
Neural Implicit Dictionary via Mixture-of-Expert Training
Neural Implicit Dictionary via Mixture-of-Expert Training
Peihao Wang
Zhiwen Fan
Tianlong Chen
Zhangyang Wang
25
12
0
08 Jul 2022
Chefs' Random Tables: Non-Trigonometric Random Features
Chefs' Random Tables: Non-Trigonometric Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
33
17
0
30 May 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
33
0
14 Apr 2022
Transparent Single-Cell Set Classification with Kernel Mean Embeddings
Transparent Single-Cell Set Classification with Kernel Mean Embeddings
Siyuan Shan
Vishal Baskaran
Haidong Yi
Jolene S Ranek
Natalie Stanley
Junier Oliva
19
11
0
18 Jan 2022
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
  Independent Projected Kernels
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels
M. Hutchinson
Alexander Terenin
Viacheslav Borovitskiy
So Takao
Yee Whye Teh
M. Deisenroth
28
20
0
27 Oct 2021
Nonlinear Distribution Regression for Remote Sensing Applications
Nonlinear Distribution Regression for Remote Sensing Applications
J. Adsuara
Adrián Pérez-Suay
Jordi Munoz-Marí
Anna Mateo-Sanchis
M. Piles
Gustau Camps-Valls
21
17
0
07 Dec 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
DP-MERF: Differentially Private Mean Embeddings with Random Features for
  Practical Privacy-Preserving Data Generation
DP-MERF: Differentially Private Mean Embeddings with Random Features for Practical Privacy-Preserving Data Generation
Frederik Harder
Kamil Adamczewski
Mijung Park
SyDa
25
101
0
26 Feb 2020
COKE: Communication-Censored Decentralized Kernel Learning
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
15
20
0
28 Jan 2020
Gaussian Processes with Errors in Variables: Theory and Computation
Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou
D. Pati
Tianying Wang
Yun Yang
R. Carroll
16
3
0
14 Oct 2019
On Kernel Derivative Approximation with Random Fourier Features
On Kernel Derivative Approximation with Random Fourier Features
Z. Szabó
Bharath K. Sriperumbudur
26
12
0
11 Oct 2018
Random Feature Stein Discrepancies
Random Feature Stein Discrepancies
Jonathan H. Huggins
Lester W. Mackey
32
45
0
20 Jun 2018
Gaussian Quadrature for Kernel Features
Gaussian Quadrature for Kernel Features
Tri Dao
Christopher De Sa
Christopher Ré
23
49
0
08 Sep 2017
Online Distributed Learning Over Networks in RKH Spaces Using Random
  Fourier Features
Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features
P. Bouboulis
S. Chouvardas
Sergios Theodoridis
24
69
0
23 Mar 2017
Approximate Kernel-based Conditional Independence Tests for Fast
  Non-Parametric Causal Discovery
Approximate Kernel-based Conditional Independence Tests for Fast Non-Parametric Causal Discovery
Eric V. Strobl
Anton van den Hengel
Shyam Visweswaran
BDL
22
169
0
13 Feb 2017
Operator-Valued Bochner Theorem, Fourier Feature Maps for
  Operator-Valued Kernels, and Vector-Valued Learning
Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning
H. Q. Minh
23
18
0
19 Aug 2016
Linearized GMM Kernels and Normalized Random Fourier Features
Linearized GMM Kernels and Normalized Random Fourier Features
Ping Li
22
9
0
18 May 2016
Bayesian Nonparametric Kernel-Learning
Bayesian Nonparametric Kernel-Learning
Junier Oliva
Kumar Avinava Dubey
A. Wilson
Barnabás Póczós
J. Schneider
Eric P. Xing
BDL
16
71
0
29 Jun 2015
Optimal Rates for Random Fourier Features
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
21
128
0
06 Jun 2015
1