Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.02617
Cited By
Path-SGD: Path-Normalized Optimization in Deep Neural Networks
8 June 2015
Behnam Neyshabur
Ruslan Salakhutdinov
Nathan Srebro
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Path-SGD: Path-Normalized Optimization in Deep Neural Networks"
50 / 83 papers shown
Title
The Empirical Impact of Reducing Symmetries on the Performance of Deep Ensembles and MoE
Andrei Chernov
Oleg Novitskij
48
0
0
24 Feb 2025
Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm
Oleksandr Borysenko
Mykhailo Bratchenko
Ilya Lukin
Mykola Luhanko
Ihor Omelchenko
Andrii Sotnikov
Alessandro Lomi
55
0
0
17 Feb 2025
Monomial Matrix Group Equivariant Neural Functional Networks
Hoang V. Tran
Thieu N. Vo
Tho H. Tran
An T. Nguyen
Tan M. Nguyen
54
5
0
18 Sep 2024
Do Sharpness-based Optimizers Improve Generalization in Medical Image Analysis?
Mohamed Hassan
Aleksandar Vakanski
Min Xian
AAML
MedIm
41
1
0
07 Aug 2024
Hidden Synergy:
L
1
L_1
L
1
Weight Normalization and 1-Path-Norm Regularization
Aditya Biswas
41
0
0
29 Apr 2024
Understanding the Double Descent Phenomenon in Deep Learning
Marc Lafon
Alexandre Thomas
25
2
0
15 Mar 2024
Level Set Teleportation: An Optimization Perspective
Aaron Mishkin
A. Bietti
Robert Mansel Gower
36
1
0
05 Mar 2024
Fine-tuning with Very Large Dropout
Jianyu Zhang
Léon Bottou
46
1
0
01 Mar 2024
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard
Rémi Emonet
Amaury Habrard
Emilie Morvant
Valentina Zantedeschi
39
3
0
19 Feb 2024
Improving Convergence and Generalization Using Parameter Symmetries
Bo Zhao
Robert Mansel Gower
Robin Walters
Rose Yu
MoMe
33
13
0
22 May 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
32
11
0
14 Feb 2023
Equivariant Architectures for Learning in Deep Weight Spaces
Aviv Navon
Aviv Shamsian
Idan Achituve
Ethan Fetaya
Gal Chechik
Haggai Maron
49
63
0
30 Jan 2023
Quantifying the Impact of Label Noise on Federated Learning
Shuqi Ke
Chao Huang
Xin Liu
FedML
31
7
0
15 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
26
6
0
02 Nov 2022
Symmetries, flat minima, and the conserved quantities of gradient flow
Bo Zhao
I. Ganev
Robin Walters
Rose Yu
Nima Dehmamy
49
16
0
31 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
32
4
0
30 Sep 2022
Local Identifiability of Deep ReLU Neural Networks: the Theory
Joachim Bona-Pellissier
Franccois Malgouyres
François Bachoc
FAtt
69
6
0
15 Jun 2022
Symmetry Teleportation for Accelerated Optimization
B. Zhao
Nima Dehmamy
Robin Walters
Rose Yu
ODL
23
20
0
21 May 2022
A Local Convergence Theory for the Stochastic Gradient Descent Method in Non-Convex Optimization With Non-isolated Local Minima
Tae-Eon Ko
Xiantao Li
30
2
0
21 Mar 2022
Penalizing Gradient Norm for Efficiently Improving Generalization in Deep Learning
Yang Zhao
Hao Zhang
Xiuyuan Hu
38
116
0
08 Feb 2022
Weight Expansion: A New Perspective on Dropout and Generalization
Gao Jin
Xinping Yi
Pengfei Yang
Lijun Zhang
S. Schewe
Xiaowei Huang
29
5
0
23 Jan 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
27
34
0
20 Jan 2022
Measuring Complexity of Learning Schemes Using Hessian-Schatten Total Variation
Shayan Aziznejad
Joaquim Campos
M. Unser
27
9
0
12 Dec 2021
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily
Lun Du
Xiaozhou Shi
Qiang Fu
Xiaojun Ma
Hengyu Liu
Shi Han
Dongmei Zhang
40
105
0
29 Oct 2021
In Search of Probeable Generalization Measures
Jonathan Jaegerman
Khalil Damouni
M. M. Ankaralı
Konstantinos N. Plataniotis
27
2
0
23 Oct 2021
Path Regularization: A Convexity and Sparsity Inducing Regularization for Parallel ReLU Networks
Tolga Ergen
Mert Pilanci
34
16
0
18 Oct 2021
The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks
R. Entezari
Hanie Sedghi
O. Saukh
Behnam Neyshabur
MoMe
39
217
0
12 Oct 2021
Perturbated Gradients Updating within Unit Space for Deep Learning
Ching-Hsun Tseng
Liu Cheng
Shin-Jye Lee
Xiaojun Zeng
50
5
0
01 Oct 2021
Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks
Rahul Parhi
Robert D. Nowak
58
38
0
18 Sep 2021
Batch Normalization Preconditioning for Neural Network Training
Susanna Lange
Kyle E. Helfrich
Qiang Ye
27
9
0
02 Aug 2021
An Embedding of ReLU Networks and an Analysis of their Identifiability
Pierre Stock
Rémi Gribonval
31
17
0
20 Jul 2021
What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory
Rahul Parhi
Robert D. Nowak
MLT
38
70
0
07 May 2021
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks
Bohan Wang
Qi Meng
Wei Chen
Tie-Yan Liu
30
33
0
11 Dec 2020
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
107
77
0
08 Dec 2020
The power of quantum neural networks
Amira Abbas
David Sutter
Christa Zoufal
Aurelien Lucchi
Alessio Figalli
Stefan Woerner
33
725
0
30 Oct 2020
Effective Regularization Through Loss-Function Metalearning
Santiago Gonzalez
Risto Miikkulainen
32
5
0
02 Oct 2020
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
28
43
0
27 Sep 2020
The Representation Theory of Neural Networks
M. Armenta
Pierre-Marc Jodoin
29
30
0
23 Jul 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
Jason D. Lee
Tengyu Ma
32
94
0
15 Jun 2020
FLeet: Online Federated Learning via Staleness Awareness and Performance Prediction
Georgios Damaskinos
R. Guerraoui
Anne-Marie Kermarrec
Vlad Nitu
Rhicheek Patra
Francois Taiani
21
54
0
12 Jun 2020
Dropout: Explicit Forms and Capacity Control
R. Arora
Peter L. Bartlett
Poorya Mianjy
Nathan Srebro
64
37
0
06 Mar 2020
On the distance between two neural networks and the stability of learning
Jeremy Bernstein
Arash Vahdat
Yisong Yue
Xuan Li
ODL
200
57
0
09 Feb 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
27
168
0
19 Dec 2019
Information-Theoretic Local Minima Characterization and Regularization
Zhiwei Jia
Hao Su
27
19
0
19 Nov 2019
On Generalization Bounds of a Family of Recurrent Neural Networks
Minshuo Chen
Xingguo Li
T. Zhao
19
70
0
28 Oct 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
324
0
13 Jun 2019
The Implicit Bias of AdaGrad on Separable Data
Qian Qian
Xiaoyuan Qian
37
23
0
09 Jun 2019
Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models
Mor Shpigel Nacson
Suriya Gunasekar
Jason D. Lee
Nathan Srebro
Daniel Soudry
33
92
0
17 May 2019
A Priori Estimates of the Population Risk for Residual Networks
E. Weinan
Chao Ma
Qingcan Wang
UQCV
37
61
0
06 Mar 2019
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
23
596
0
01 Jan 2019
1
2
Next