ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02361
  4. Cited By
Microscopic approach of a time elapsed neural model

Microscopic approach of a time elapsed neural model

8 June 2015
Julien Chevallier
María J. Cáceres
M. Doumic
Patricia Reynaud-Bouret
ArXivPDFHTML

Papers citing "Microscopic approach of a time elapsed neural model"

4 / 4 papers shown
Title
Heterogeneous Neuronal and Synaptic Dynamics for Spike-Efficient
  Unsupervised Learning: Theory and Design Principles
Heterogeneous Neuronal and Synaptic Dynamics for Spike-Efficient Unsupervised Learning: Theory and Design Principles
Biswadeep Chakraborty
Saibal Mukhopadhyay
23
10
0
22 Feb 2023
Regenerative properties of the linear hawkes process with unbounded
  memory
Regenerative properties of the linear hawkes process with unbounded memory
C. Graham
30
12
0
27 May 2019
Fast Estimation of Causal Interactions using Wold Processes
Fast Estimation of Causal Interactions using Wold Processes
Flavio Figueiredo
Guilherme R. Borges
Pedro O. S. Vaz de Melo
Renato M. Assunção
34
9
0
12 Jul 2018
Statistical estimation of a growth-fragmentation model observed on a
  genealogical tree
Statistical estimation of a growth-fragmentation model observed on a genealogical tree
M. Doumic
M. Hoffmann
Nathalie Krell
L. Robert
225
102
0
11 Oct 2012
1