ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02157
  4. Cited By
Dropout as a Bayesian Approximation: Appendix

Dropout as a Bayesian Approximation: Appendix

6 June 2015
Y. Gal
Zoubin Ghahramani
    BDL
ArXivPDFHTML

Papers citing "Dropout as a Bayesian Approximation: Appendix"

13 / 13 papers shown
Title
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
187
1,887
0
20 May 2015
Improving the Gaussian Process Sparse Spectrum Approximation by
  Representing Uncertainty in Frequency Inputs
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
51
78
0
09 Mar 2015
Latent Gaussian Processes for Distribution Estimation of Multivariate
  Categorical Data
Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data
Y. Gal
Yutian Chen
Zoubin Ghahramani
SyDa
57
41
0
07 Mar 2015
Distributed Variational Inference in Sparse Gaussian Process Regression
  and Latent Variable Models
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
70
150
0
06 Feb 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,927
1
21 Dec 2013
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
127
12,231
0
19 Dec 2013
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
107
1,232
0
26 Sep 2013
Dropout Training as Adaptive Regularization
Dropout Training as Adaptive Regularization
Stefan Wager
Sida I. Wang
Percy Liang
129
599
0
04 Jul 2013
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
130
1,182
0
02 Nov 2012
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
453
7,663
0
03 Jul 2012
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
259
2,622
0
29 Jun 2012
Variational Bayesian Inference with Stochastic Search
Variational Bayesian Inference with Stochastic Search
John Paisley
David M. Blei
Michael I. Jordan
BDL
106
499
0
27 Jun 2012
1