Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.02078
Cited By
v1
v2 (latest)
Visualizing and Understanding Recurrent Networks
5 June 2015
A. Karpathy
Justin Johnson
Li Fei-Fei
HAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Visualizing and Understanding Recurrent Networks"
50 / 458 papers shown
Title
Analyzing machine-learned representations: A natural language case study
Ishita Dasgupta
Demi Guo
S. Gershman
Noah D. Goodman
NAI
80
13
0
12 Sep 2019
DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning
Theo Jaunet
Romain Vuillemot
Christian Wolf
HAI
142
36
0
06 Sep 2019
PREMA: A Predictive Multi-task Scheduling Algorithm For Preemptible Neural Processing Units
Yujeong Choi
Minsoo Rhu
61
135
0
06 Sep 2019
Visualizing RNN States with Predictive Semantic Encodings
Lindsey Sawatzky
Steven Bergner
F. Popowich
62
6
0
01 Aug 2019
Deep Multi-Kernel Convolutional LSTM Networks and an Attention-Based Mechanism for Videos
Sebastian Agethen
Winston H. Hsu
HAI
79
25
0
30 Jul 2019
RNNbow: Visualizing Learning via Backpropagation Gradients in Recurrent Neural Networks
Dylan Cashman
Genevieve Patterson
Abigail Mosca
Nathan Watts
Shannon Robinson
Remco Chang
FAtt
54
34
0
29 Jul 2019
Interpretable and Steerable Sequence Learning via Prototypes
Yao Ming
Panpan Xu
Huamin Qu
Liu Ren
AI4TS
68
141
0
23 Jul 2019
Sparsity Emerges Naturally in Neural Language Models
Naomi Saphra
Adam Lopez
MILM
28
1
0
22 Jul 2019
Self-Attentive Hawkes Processes
Qiang Zhang
Aldo Lipani
Ömer Kirnap
Emine Yilmaz
AI4TS
132
45
0
17 Jul 2019
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Erico Tjoa
Cuntai Guan
XAI
202
1,466
0
17 Jul 2019
Improving the Performance of the LSTM and HMM Model via Hybridization
Larkin Liu
Yu-Chung Lin
Joshua Reid
128
9
0
09 Jul 2019
A Comparative Analysis of Knowledge-Intensive and Data-Intensive Semantic Parsers
Junjie Cao
Zi-yu Lin
Weiwei SUN
Xiaojun Wan
36
1
0
04 Jul 2019
Understanding Memory Modules on Learning Simple Algorithms
Kexin Wang
Yu Zhou
Shaonan Wang
Jiajun Zhang
Chengqing Zong
90
0
0
01 Jul 2019
Widening the Representation Bottleneck in Neural Machine Translation with Lexical Shortcuts
Denis Emelin
Ivan Titov
Rico Sennrich
58
10
0
28 Jun 2019
Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics
Niru Maheswaranathan
Alex H. Williams
Matthew D. Golub
Surya Ganguli
David Sussillo
81
83
0
25 Jun 2019
Machine Learning Testing: Survey, Landscapes and Horizons
Jie M. Zhang
Mark Harman
Lei Ma
Yang Liu
VLM
AILaw
112
757
0
19 Jun 2019
Open Sesame: Getting Inside BERT's Linguistic Knowledge
Yongjie Lin
Y. Tan
Robert Frank
96
287
0
04 Jun 2019
On the Realization of Compositionality in Neural Networks
Joris Baan
Jana Leible
Mitja Nikolaus
David Rau
Dennis Ulmer
Tim Baumgärtner
Dieuwke Hupkes
Elia Bruni
CoGe
76
16
0
04 Jun 2019
Seeing the Wind: Visual Wind Speed Prediction with a Coupled Convolutional and Recurrent Neural Network
Jennifer L. Cardona
M. Howland
J. Dabiri
35
29
0
30 May 2019
Clustering and Recognition of Spatiotemporal Features through Interpretable Embedding of Sequence to Sequence Recurrent Neural Networks
Kun Su
Eli Shlizerman
73
13
0
29 May 2019
Interpreting a Recurrent Neural Network's Predictions of ICU Mortality Risk
L. Ho
M. Aczon
D. Ledbetter
R. Wetzel
46
3
0
23 May 2019
Mutual Information Scaling and Expressive Power of Sequence Models
Huitao Shen
85
18
0
10 May 2019
Learning higher-order sequential structure with cloned HMMs
Antoine Dedieu
Nishad Gothoskar
Scott Swingle
Wolfgang Lehrach
Miguel Lazaro-Gredilla
Dileep George
85
17
0
01 May 2019
Optical Transient Object Classification in Wide Field Small Aperture Telescopes with Neural Networks
P. Jia
Yifei Zhao
Gang Xue
Dongmei Cai
58
20
0
29 Apr 2019
Multi-modal gated recurrent units for image description
Xuelong Li
Aihong Yuan
Xiaoqiang Lu
GAN
43
26
0
20 Apr 2019
Attentive Action and Context Factorization
Yanjie Wang
Vinh Tran
Gedas Bertasius
Lorenzo Torresani
Minh Hoai
33
6
0
10 Apr 2019
Finding and Visualizing Weaknesses of Deep Reinforcement Learning Agents
Christian Rupprecht
Cyril Ibrahim
C. Pal
98
32
0
02 Apr 2019
On Attribution of Recurrent Neural Network Predictions via Additive Decomposition
Mengnan Du
Ninghao Liu
Fan Yang
Shuiwang Ji
Helen Zhou
FAtt
76
51
0
27 Mar 2019
Linguistic Knowledge and Transferability of Contextual Representations
Nelson F. Liu
Matt Gardner
Yonatan Belinkov
Matthew E. Peters
Noah A. Smith
169
735
0
21 Mar 2019
NeuralHydrology -- Interpreting LSTMs in Hydrology
Frederik Kratzert
M. Herrnegger
D. Klotz
Sepp Hochreiter
Günter Klambauer
60
86
0
19 Mar 2019
The emergence of number and syntax units in LSTM language models
Yair Lakretz
Germán Kruszewski
T. Desbordes
Dieuwke Hupkes
S. Dehaene
Marco Baroni
99
173
0
18 Mar 2019
Technical notes: Syntax-aware Representation Learning With Pointer Networks
Matteo Grella
59
0
0
17 Mar 2019
Character Eyes: Seeing Language through Character-Level Taggers
Yuval Pinter
Marc Marone
Jacob Eisenstein
66
7
0
12 Mar 2019
Probabilistic Modeling for Novelty Detection with Applications to Fraud Identification
Rémi Domingues
AAML
50
3
0
05 Mar 2019
A comparative evaluation of novelty detection algorithms for discrete sequences
Rémi Domingues
Pietro Michiardi
Jérémie Barlet
Maurizio Filippone
50
20
0
28 Feb 2019
Representing Formal Languages: A Comparison Between Finite Automata and Recurrent Neural Networks
Joshua J. Michalenko
Ameesh Shah
Abhinav Verma
Richard G. Baraniuk
Swarat Chaudhuri
Ankit B. Patel
AI4CE
123
22
0
27 Feb 2019
Phoneme Level Language Models for Sequence Based Low Resource ASR
Siddharth Dalmia
Xinjian Li
A. Black
Florian Metze
46
7
0
20 Feb 2019
Understanding and Controlling Memory in Recurrent Neural Networks
Doron Haviv
A. Rivkind
O. Barak
44
21
0
19 Feb 2019
Discovery of Natural Language Concepts in Individual Units of CNNs
Seil Na
Yo Joong Choe
Dong-Hyun Lee
Gunhee Kim
MILM
55
24
0
18 Feb 2019
LS-Tree: Model Interpretation When the Data Are Linguistic
Jianbo Chen
Michael I. Jordan
71
18
0
11 Feb 2019
Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI
Shane T. Mueller
R. Hoffman
W. Clancey
Abigail Emrey
Gary Klein
XAI
76
286
0
05 Feb 2019
Early Recognition of Sepsis with Gaussian Process Temporal Convolutional Networks and Dynamic Time Warping
Michael Moor
Max Horn
Bastian Rieck
D. Roqueiro
Karsten Borgwardt
40
14
0
05 Feb 2019
Saliency Tubes: Visual Explanations for Spatio-Temporal Convolutions
Alexandros Stergiou
G. Kapidis
Grigorios Kalliatakis
C. Chrysoulas
R. Veltkamp
R. Poppe
FAtt
83
47
0
04 Feb 2019
On the Units of GANs (Extended Abstract)
David Bau
Jun-Yan Zhu
Hendrik Strobelt
Bolei Zhou
J. Tenenbaum
William T. Freeman
Antonio Torralba
61
61
0
29 Jan 2019
How do Mixture Density RNNs Predict the Future?
K. Ellefsen
Charles Patrick Martin
J. Tørresen
66
13
0
23 Jan 2019
A Survey of the Recent Architectures of Deep Convolutional Neural Networks
Asifullah Khan
A. Sohail
Umme Zahoora
Aqsa Saeed Qureshi
OOD
207
2,325
0
17 Jan 2019
Formal models of Structure Building in Music, Language and Animal Songs
Willem H. Zuidema
Dieuwke Hupkes
Geraint A. Wiggins
C. Scharff
M. Rohrmeier
21
2
0
16 Jan 2019
Variable-sized input, character-level recurrent neural networks in lead generation: predicting close rates from raw user inputs
Giulio Giorcelli
AI4TS
31
0
0
16 Jan 2019
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin Yu
XAI
HAI
221
1,459
0
14 Jan 2019
Recurrent Neural Networks for Time Series Forecasting
Gábor Petneházi
AI4TS
110
115
0
01 Jan 2019
Previous
1
2
3
4
5
6
...
8
9
10
Next