ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.01351
  4. Cited By
Celeste: Variational inference for a generative model of astronomical
  images

Celeste: Variational inference for a generative model of astronomical images

3 June 2015
Jeffrey Regier
Andrew C. Miller
Jon D. McAuliffe
Ryan P. Adams
Matt Hoffman
D. Lang
D. Schlegel
Adobe Research
    GAN
ArXivPDFHTML

Papers citing "Celeste: Variational inference for a generative model of astronomical images"

7 / 7 papers shown
Title
Deep representation learning: Fundamentals, Perspectives, Applications,
  and Open Challenges
Deep representation learning: Fundamentals, Perspectives, Applications, and Open Challenges
K. T. Baghaei
Amirreza Payandeh
Pooya Fayyazsanavi
Shahram Rahimi
Zhiqian Chen
Somayeh Bakhtiari Ramezani
FaML
AI4TS
38
6
0
27 Nov 2022
Astronomia ex machina: a history, primer, and outlook on neural networks
  in astronomy
Astronomia ex machina: a history, primer, and outlook on neural networks in astronomy
Michael J. Smith
James E. Geach
35
32
0
07 Nov 2022
Deploying Containerized QuantEx Quantum Simulation Software on HPC
  Systems
Deploying Containerized QuantEx Quantum Simulation Software on HPC Systems
D. Brayford
John Brennan
M. Allalen
K. Hanley
L. Iapichino
L. ORiordan
N. Moran
19
3
0
11 Oct 2021
Cataloging the Visible Universe through Bayesian Inference at Petascale
Cataloging the Visible Universe through Bayesian Inference at Petascale
Jeffrey Regier
K. Pamnany
Keno Fischer
A. Noack
Maximilian Lam
...
Ryan Giordano
D. Schlegel
Jon D. McAuliffe
R. Thomas
P. Prabhat
29
16
0
31 Jan 2018
Learning an Astronomical Catalog of the Visible Universe through
  Scalable Bayesian Inference
Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian Inference
Jeffrey Regier
Steven R. Howard
Ryan Giordano
Ryan P. Adams
Andy Miller
Jon D. McAuliffe
Andreas Jensen
21
7
0
10 Nov 2016
Enabling Dark Energy Science with Deep Generative Models of Galaxy
  Images
Enabling Dark Energy Science with Deep Generative Models of Galaxy Images
Siamak Ravanbakhsh
F. Lanusse
Rachel Mandelbaum
J. Schneider
Barnabás Póczós
30
65
0
19 Sep 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
44
4,710
0
04 Jan 2016
1