Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1505.06813
Cited By
Surrogate Functions for Maximizing Precision at the Top
26 May 2015
Purushottam Kar
Harikrishna Narasimhan
Prateek Jain
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Surrogate Functions for Maximizing Precision at the Top"
10 / 10 papers shown
Title
A Recommender System for Scientific Datasets and Analysis Pipelines
M. Mazaheri
Greg Kiar
Tristan Glatard
AI4TS
21
3
0
20 Aug 2021
Implicit Rate-Constrained Optimization of Non-decomposable Objectives
Abhishek Kumar
Harikrishna Narasimhan
Andrew Cotter
13
10
0
23 Jul 2021
General Framework for Binary Classification on Top Samples
Lukáš Adam
V. Mácha
Václav Smídl
Tomás Pevný
29
5
0
25 Feb 2020
Optimizing Black-box Metrics with Adaptive Surrogates
Qijia Jiang
Olaoluwa Adigun
Harikrishna Narasimhan
M. M. Fard
Maya R. Gupta
14
16
0
20 Feb 2020
Rich-Item Recommendations for Rich-Users: Exploiting Dynamic and Static Side Information
A. Budhiraja
G. Hiranandani
Darshak Chhatbar
Aditya Sinha
Navya Yarrabelly
Ayush Choure
Oluwasanmi Koyejo
Prateek Jain
25
4
0
28 Jan 2020
Efficient Algorithms for Smooth Minimax Optimization
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
22
190
0
02 Jul 2019
Backdrop: Stochastic Backpropagation
Siavash Golkar
Kyle Cranmer
19
2
0
04 Jun 2018
A plug-in approach to maximising precision at the top and recall at the top
Dirk Tasche
16
7
0
09 Apr 2018
Constrained Classification and Ranking via Quantiles
Alan Mackey
Xiyang Luo
Elad Eban
14
6
0
28 Feb 2018
Optimizing Non-decomposable Measures with Deep Networks
Amartya Sanyal
Pawan Kumar
Purushottam Kar
S. Chawla
Fabrizio Sebastiani
20
26
0
31 Jan 2018
1