ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.06812
  4. Cited By
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

26 May 2015
Harikrishna Narasimhan
Purushottam Kar
Prateek Jain
ArXivPDFHTML

Papers citing "Optimizing Non-decomposable Performance Measures: A Tale of Two Classes"

12 / 12 papers shown
Title
A General Online Algorithm for Optimizing Complex Performance Metrics
A General Online Algorithm for Optimizing Complex Performance Metrics
Wojciech Kotłowski
Marek Wydmuch
Erik Schultheis
Rohit Babbar
Krzysztof Dembczyñski
46
0
0
20 Jun 2024
A comprehensive theoretical framework for the optimization of neural
  networks classification performance with respect to weighted metrics
A comprehensive theoretical framework for the optimization of neural networks classification performance with respect to weighted metrics
Francesco Marchetti
Sabrina Guastavino
C. Campi
F. Benvenuto
Michele Piana
15
1
0
22 May 2023
sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel
  Classification
sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel Classification
Gabriel Bénédict
Vincent Koops
Daan Odijk
Maarten de Rijke
32
30
0
24 Aug 2021
Implicit Rate-Constrained Optimization of Non-decomposable Objectives
Implicit Rate-Constrained Optimization of Non-decomposable Objectives
Abhishek Kumar
Harikrishna Narasimhan
Andrew Cotter
18
10
0
23 Jul 2021
A surrogate loss function for optimization of $F_β$ score in binary
  classification with imbalanced data
A surrogate loss function for optimization of FβF_βFβ​ score in binary classification with imbalanced data
Namgil Lee
Heejung Yang
Hojin Yoo
21
8
0
03 Apr 2021
Attentional-Biased Stochastic Gradient Descent
Attentional-Biased Stochastic Gradient Descent
Q. Qi
Yi Tian Xu
R. L. Jin
W. Yin
Tianbao Yang
ODL
26
12
0
13 Dec 2020
Optimizing Black-box Metrics with Adaptive Surrogates
Optimizing Black-box Metrics with Adaptive Surrogates
Qijia Jiang
Olaoluwa Adigun
Harikrishna Narasimhan
M. M. Fard
Maya R. Gupta
22
16
0
20 Feb 2020
Backdrop: Stochastic Backpropagation
Backdrop: Stochastic Backpropagation
Siavash Golkar
Kyle Cranmer
36
2
0
04 Jun 2018
Binary Classification with Karmic, Threshold-Quasi-Concave Metrics
Binary Classification with Karmic, Threshold-Quasi-Concave Metrics
Bowei Yan
Oluwasanmi Koyejo
Kai Zhong
Pradeep Ravikumar
10
31
0
02 Jun 2018
Optimizing Non-decomposable Measures with Deep Networks
Optimizing Non-decomposable Measures with Deep Networks
Amartya Sanyal
Pawan Kumar
Purushottam Kar
S. Chawla
Fabrizio Sebastiani
25
26
0
31 Jan 2018
Satisfying Real-world Goals with Dataset Constraints
Satisfying Real-world Goals with Dataset Constraints
Gabriel Goh
Andrew Cotter
Maya R. Gupta
M. Friedlander
OffRL
9
212
0
24 Jun 2016
Surrogate Functions for Maximizing Precision at the Top
Surrogate Functions for Maximizing Precision at the Top
Purushottam Kar
Harikrishna Narasimhan
Prateek Jain
26
42
0
26 May 2015
1