ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05654
  4. Cited By
Slope heuristics and V-Fold model selection in heteroscedastic
  regression using strongly localized bases

Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases

21 May 2015
F. Navarro
Adrien Saumard
ArXivPDFHTML

Papers citing "Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases"

4 / 4 papers shown
Title
Finite sample improvement of Akaike's Information Criterion
Finite sample improvement of Akaike's Information Criterion
Adrien Saumard
F. Navarro
26
3
0
06 Mar 2018
On optimality of empirical risk minimization in linear aggregation
On optimality of empirical risk minimization in linear aggregation
Adrien Saumard
28
21
0
11 May 2016
Data-driven calibration of penalties for least-squares regression
Data-driven calibration of penalties for least-squares regression
Sylvain Arlot
P. Massart
152
159
0
06 Feb 2008
V-fold cross-validation improved: V-fold penalization
V-fold cross-validation improved: V-fold penalization
Sylvain Arlot
119
70
0
05 Feb 2008
1