ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.05715
  4. Cited By
Langevin and Hamiltonian based Sequential MCMC for Efficient Bayesian
  Filtering in High-dimensional Spaces

Langevin and Hamiltonian based Sequential MCMC for Efficient Bayesian Filtering in High-dimensional Spaces

22 April 2015
F. Septier
G. Peters
ArXivPDFHTML

Papers citing "Langevin and Hamiltonian based Sequential MCMC for Efficient Bayesian Filtering in High-dimensional Spaces"

11 / 11 papers shown
Title
Bayesian computation: a perspective on the current state, and sampling
  backwards and forwards
Bayesian computation: a perspective on the current state, and sampling backwards and forwards
P. Green
K. Latuszyñski
Marcelo Pereyra
Christian P. Robert
87
21
0
04 Feb 2015
A Stable Particle Filter in High-Dimensions
A Stable Particle Filter in High-Dimensions
A. Beskos
Dan Crisan
Ajay Jasra
K. Kamatani
Yan Zhou
69
35
0
11 Dec 2014
Optimizing The Integrator Step Size for Hamiltonian Monte Carlo
Optimizing The Integrator Step Size for Hamiltonian Monte Carlo
M. Betancourt
Simon Byrne
Mark Girolami
83
77
0
24 Nov 2014
Information-geometric Markov Chain Monte Carlo methods using Diffusions
Information-geometric Markov Chain Monte Carlo methods using Diffusions
Samuel Livingstone
Mark Girolami
DiffM
86
45
0
31 Mar 2014
Fast Hamiltonian Monte Carlo Using GPU Computing
Fast Hamiltonian Monte Carlo Using GPU Computing
Andrew L. Beam
S. Ghosh
Jon Doyle
61
24
0
17 Feb 2014
Langevin diffusions and the Metropolis-adjusted Langevin algorithm
Langevin diffusions and the Metropolis-adjusted Langevin algorithm
Tatiana Xifara
Chris Sherlock
Samuel Livingstone
Simon Byrne
Mark Girolami
80
126
0
11 Sep 2013
Proximal Markov chain Monte Carlo algorithms
Proximal Markov chain Monte Carlo algorithms
Marcelo Pereyra
79
178
0
02 Jun 2013
Adaptive Hamiltonian and Riemann Manifold Monte Carlo Samplers
Adaptive Hamiltonian and Riemann Manifold Monte Carlo Samplers
Ziyun Wang
S. Mohamed
Nando de Freitas
152
56
0
25 Feb 2013
Can local particle filters beat the curse of dimensionality?
Can local particle filters beat the curse of dimensionality?
Patrick Rebeschini
R. Handel
99
239
0
28 Jan 2013
Sequentially interacting Markov chain Monte Carlo methods
Sequentially interacting Markov chain Monte Carlo methods
A. Brockwell
P. Del Moral
Arnaud Doucet
57
56
0
12 Nov 2012
Sharp failure rates for the bootstrap particle filter in high dimensions
Sharp failure rates for the bootstrap particle filter in high dimensions
Peter J. Bickel
Bo Li
T. Bengtsson
133
203
0
21 May 2008
1