ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.04814
  4. Cited By
Asymptotic behaviour of the empirical Bayes posteriors associated to
  maximum marginal likelihood estimator

Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal likelihood estimator

19 April 2015
Judith Rousseau
Botond Szabó
ArXivPDFHTML

Papers citing "Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal likelihood estimator"

12 / 12 papers shown
Title
A Bayesian approach with Gaussian priors to the inverse problem of
  source identification in elliptic PDEs
A Bayesian approach with Gaussian priors to the inverse problem of source identification in elliptic PDEs
Matteo Giordano
27
0
0
29 Feb 2024
Posterior Contraction Rates for Matérn Gaussian Processes on
  Riemannian Manifolds
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds
Paul Rosa
Viacheslav Borovitskiy
Alexander Terenin
Judith Rousseau
30
7
0
19 Sep 2023
Optimal plug-in Gaussian processes for modelling derivatives
Optimal plug-in Gaussian processes for modelling derivatives
Zejian Liu
Meng Li
21
6
0
20 Oct 2022
Fast Instrument Learning with Faster Rates
Fast Instrument Learning with Faster Rates
Ziyu Wang
Yuhao Zhou
Jun Zhu
29
3
0
22 May 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process
  Interpolation
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
27
1
0
10 Mar 2022
Contraction rates for sparse variational approximations in Gaussian
  process regression
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
52
17
0
22 Sep 2021
Maximum likelihood estimation of regularisation parameters in
  high-dimensional inverse problems: an empirical Bayesian approach. Part I:
  Methodology and Experiments
Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part I: Methodology and Experiments
A. F. Vidal
Valentin De Bortoli
Marcelo Pereyra
Alain Durmus
24
7
0
26 Nov 2019
Solving the Empirical Bayes Normal Means Problem with Correlated Noise
Solving the Empirical Bayes Normal Means Problem with Correlated Noise
Lei Sun
M. Stephens
9
9
0
18 Dec 2018
On Statistical Optimality of Variational Bayes
On Statistical Optimality of Variational Bayes
D. Pati
A. Bhattacharya
Yun Yang
29
63
0
25 Dec 2017
Asymptotic frequentist coverage properties of Bayesian credible sets for
  sieve priors
Asymptotic frequentist coverage properties of Bayesian credible sets for sieve priors
Judith Rousseau
Botond Szabó
24
22
0
16 Sep 2016
Estimating a smooth function on a large graph by Bayesian Laplacian
  regularisation
Estimating a smooth function on a large graph by Bayesian Laplacian regularisation
A. Kirichenko
Harry Van Zanten
BDL
9
31
0
08 Nov 2015
Posterior concentration rates for empirical Bayes procedures, with
  applications to Dirichlet Process mixtures
Posterior concentration rates for empirical Bayes procedures, with applications to Dirichlet Process mixtures
S. Donnet
Vincent Rivoirard
Judith Rousseau
Catia Scricciolo
39
41
0
17 Jun 2014
1