Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1504.04407
Cited By
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
16 April 2015
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting"
50 / 93 papers shown
Title
Error estimates between SGD with momentum and underdamped Langevin diffusion
Arnaud Guillin
Yu Wang
Lihu Xu
Haoran Yang
24
1
0
22 Oct 2024
A Unified Theory of Stochastic Proximal Point Methods without Smoothness
Peter Richtárik
Abdurakhmon Sadiev
Yury Demidovich
45
4
0
24 May 2024
Towards a Better Theoretical Understanding of Independent Subnetwork Training
Egor Shulgin
Peter Richtárik
AI4CE
28
6
0
28 Jun 2023
On the Utility of Equal Batch Sizes for Inference in Stochastic Gradient Descent
Rahul Singh
A. Shukla
Dootika Vats
29
0
0
14 Mar 2023
Non asymptotic analysis of Adaptive stochastic gradient algorithms and applications
Antoine Godichon-Baggioni
Pierre Tarrago
24
5
0
01 Mar 2023
The Stochastic Proximal Distance Algorithm
Hao Jiang
Jason Xu
30
0
0
21 Oct 2022
Stochastic Primal-Dual Three Operator Splitting Algorithm with Extension to Equivariant Regularization-by-Denoising
Junqi Tang
Matthias Joachim Ehrhardt
Carola-Bibiane Schönlieb
33
0
0
02 Aug 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
55
5
0
06 Jun 2022
AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation
Farshid Varno
Marzie Saghayi
Laya Rafiee
Sharut Gupta
Stan Matwin
Mohammad Havaei
FedML
34
30
0
27 Apr 2022
Convergence in quadratic mean of averaged stochastic gradient algorithms without strong convexity nor bounded gradient
Antoine Godichon-Baggioni
8
6
0
26 Jul 2021
Regularization by Denoising Sub-sampled Newton Method for Spectral CT Multi-Material Decomposition
A. Perelli
M. S. Andersen
16
7
0
25 Mar 2021
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods
Zheng Shi
Abdurakhmon Sadiev
Nicolas Loizou
Peter Richtárik
Martin Takávc
ODL
34
13
0
19 Feb 2021
Distributed Machine Learning for Wireless Communication Networks: Techniques, Architectures, and Applications
Shuyan Hu
Xiaojing Chen
Wei Ni
Ekram Hossain
Xin Wang
AI4CE
47
111
0
02 Dec 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark W. Schmidt
Francis R. Bach
Peter Richtárik
19
111
0
02 Oct 2020
A variable metric mini-batch proximal stochastic recursive gradient algorithm with diagonal Barzilai-Borwein stepsize
Tengteng Yu
Xinwei Liu
Yuhong Dai
Jie Sun
10
4
0
02 Oct 2020
A general framework for decentralized optimization with first-order methods
Ran Xin
Shi Pu
Angelia Nedić
U. Khan
16
87
0
12 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
39
50
0
08 Jul 2020
Balancing Rates and Variance via Adaptive Batch-Size for Stochastic Optimization Problems
Zhan Gao
Alec Koppel
Alejandro Ribeiro
30
10
0
02 Jul 2020
Unified Analysis of Stochastic Gradient Methods for Composite Convex and Smooth Optimization
Ahmed Khaled
Othmane Sebbouh
Nicolas Loizou
Robert Mansel Gower
Peter Richtárik
11
46
0
20 Jun 2020
Stochastic Coordinate Minimization with Progressive Precision for Stochastic Convex Optimization
Sudeep Salgia
Qing Zhao
Sattar Vakili
48
2
0
11 Mar 2020
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
27
30
0
22 Oct 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
9
36
0
21 Oct 2019
Variance-Reduced Decentralized Stochastic Optimization with Gradient Tracking -- Part II: GT-SVRG
Ran Xin
U. Khan
S. Kar
9
8
0
08 Oct 2019
Randomized Iterative Methods for Linear Systems: Momentum, Inexactness and Gossip
Nicolas Loizou
24
5
0
26 Sep 2019
Towards closing the gap between the theory and practice of SVRG
Othmane Sebbouh
Nidham Gazagnadou
Samy Jelassi
Francis R. Bach
Robert Mansel Gower
11
17
0
31 Jul 2019
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
27
49
0
08 Jul 2019
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
35
122
0
23 Jun 2019
Accelerating Mini-batch SARAH by Step Size Rules
Zhuang Yang
Zengping Chen
Cheng-Yu Wang
8
15
0
20 Jun 2019
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
9
143
0
27 May 2019
Dynamic Mini-batch SGD for Elastic Distributed Training: Learning in the Limbo of Resources
Yanghua Peng
Hang Zhang
Yifei Ma
Tong He
Zhi-Li Zhang
Sheng Zha
Mu Li
25
23
0
26 Apr 2019
Sparse Regression and Adaptive Feature Generation for the Discovery of Dynamical Systems
C. S. Kulkarni
15
10
0
07 Feb 2019
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop
D. Kovalev
Samuel Horváth
Peter Richtárik
30
155
0
24 Jan 2019
SAGA with Arbitrary Sampling
Xun Qian
Zheng Qu
Peter Richtárik
34
25
0
24 Jan 2019
ASVRG: Accelerated Proximal SVRG
Fanhua Shang
L. Jiao
Kaiwen Zhou
James Cheng
Yan Ren
Yufei Jin
ODL
21
30
0
07 Oct 2018
Fast Variance Reduction Method with Stochastic Batch Size
Xuanqing Liu
Cho-Jui Hsieh
15
5
0
07 Aug 2018
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches
Jie Liu
Yu Rong
Martin Takáč
Junzhou Huang
ODL
22
7
0
14 Jul 2018
Direct Acceleration of SAGA using Sampled Negative Momentum
Kaiwen Zhou
8
45
0
28 Jun 2018
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
14
74
0
28 Jun 2018
Stochastic Variance-Reduced Policy Gradient
Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
19
174
0
14 Jun 2018
Double Quantization for Communication-Efficient Distributed Optimization
Yue Yu
Jiaxiang Wu
Longbo Huang
MQ
19
57
0
25 May 2018
D
2
^2
2
: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
20
348
0
19 Mar 2018
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning
Fanhua Shang
Kaiwen Zhou
Hongying Liu
James Cheng
Ivor W. Tsang
Lijun Zhang
Dacheng Tao
L. Jiao
24
65
0
26 Feb 2018
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization
Fanhua Shang
Yuanyuan Liu
Kaiwen Zhou
James Cheng
K. K. Ng
Yuichi Yoshida
19
9
0
26 Feb 2018
A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments
Radoslav Harman
Lenka Filová
Peter Richtárik
26
51
0
17 Jan 2018
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
16
70
0
11 Jan 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
19
200
0
27 Dec 2017
Linearly convergent stochastic heavy ball method for minimizing generalization error
Nicolas Loizou
Peter Richtárik
34
45
0
30 Oct 2017
A Generic Approach for Escaping Saddle points
Sashank J. Reddi
Manzil Zaheer
S. Sra
Barnabás Póczós
Francis R. Bach
Ruslan Salakhutdinov
Alex Smola
13
83
0
05 Sep 2017
A Robust Multi-Batch L-BFGS Method for Machine Learning
A. Berahas
Martin Takáč
AAML
ODL
17
44
0
26 Jul 2017
1
2
Next