ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.04406
  4. Cited By
Non-Uniform Stochastic Average Gradient Method for Training Conditional
  Random Fields

Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields

16 April 2015
Mark Schmidt
Reza Babanezhad
Mohamed Osama Ahmed
Aaron Defazio
Ann Clifton
Anoop Sarkar
ArXiv (abs)PDFHTML

Papers citing "Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields"

8 / 8 papers shown
Title
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
135
1,828
0
01 Jul 2014
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
158
739
0
19 Mar 2014
Stochastic Gradient Descent, Weighted Sampling, and the Randomized
  Kaczmarz algorithm
Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm
Deanna Needell
Nathan Srebro
Rachel A. Ward
149
555
0
21 Oct 2013
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
324
1,249
0
10 Sep 2013
Block-Coordinate Frank-Wolfe Optimization for Structural SVMs
Block-Coordinate Frank-Wolfe Optimization for Structural SVMs
Simon Lacoste-Julien
Martin Jaggi
Mark Schmidt
Patrick A. Pletscher
135
366
0
19 Jul 2012
A Stochastic Gradient Method with an Exponential Convergence Rate for
  Finite Training Sets
A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets
Nicolas Le Roux
Mark Schmidt
Francis R. Bach
ODL
70
104
0
28 Feb 2012
Towards Optimal One Pass Large Scale Learning with Averaged Stochastic
  Gradient Descent
Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent
Wenyuan Xu
76
157
0
13 Jul 2011
Hybrid Deterministic-Stochastic Methods for Data Fitting
Hybrid Deterministic-Stochastic Methods for Data Fitting
M. Friedlander
Mark Schmidt
196
387
0
13 Apr 2011
1