Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1504.00641
Cited By
A Probabilistic Theory of Deep Learning
2 April 2015
Ankit B. Patel
M. T. Nguyen
Richard G. Baraniuk
BDL
OOD
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Probabilistic Theory of Deep Learning"
15 / 15 papers shown
Title
FedCLEAN: byzantine defense by CLustering Errors of Activation maps in Non-IID federated learning environments
Mehdi Ben Ghali
Reda Bellafqira
Gouenou Coatrieux
AAML
FedML
50
0
0
21 Jan 2025
Probing the Latent Hierarchical Structure of Data via Diffusion Models
Antonio Sclocchi
Alessandro Favero
Noam Itzhak Levi
M. Wyart
DiffM
40
3
0
17 Oct 2024
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks
Andrew M. Saxe
Shagun Sodhani
Sam Lewallen
AI4CE
32
34
0
21 Jul 2022
Face representation by deep learning: a linear encoding in a parameter space?
Qiulei Dong
Qiulei Dong
Zhanyi Hu
CVBM
17
1
0
22 Oct 2019
DeepSigns: A Generic Watermarking Framework for IP Protection of Deep Learning Models
B. Rouhani
Huili Chen
F. Koushanfar
43
48
0
02 Apr 2018
Semi-Supervised Learning via New Deep Network Inversion
Randall Balestriero
Vincent Roger
H. Glotin
Richard G. Baraniuk
24
3
0
12 Nov 2017
A Probabilistic Framework for Deep Learning
Ankit B. Patel
M. T. Nguyen
Richard G. Baraniuk
BDL
37
67
0
06 Dec 2016
Distributed Sequence Memory of Multidimensional Inputs in Recurrent Networks
Adam S. Charles
Dong Yin
Christopher Rozell
GNN
33
20
0
26 May 2016
Training Neural Networks Without Gradients: A Scalable ADMM Approach
Gavin Taylor
R. Burmeister
Zheng Xu
Bharat Singh
Ankit B. Patel
Tom Goldstein
ODL
24
273
0
06 May 2016
A Simple Hierarchical Pooling Data Structure for Loop Closure
Xiaohan Fei
Konstantine Tsotsos
Stefano Soatto
27
13
0
20 Nov 2015
On the energy landscape of deep networks
Pratik Chaudhari
Stefano Soatto
ODL
43
27
0
20 Nov 2015
Why are deep nets reversible: A simple theory, with implications for training
Sanjeev Arora
Yingyu Liang
Tengyu Ma
19
54
0
18 Nov 2015
On the interplay of network structure and gradient convergence in deep learning
V. Ithapu
Sathya Ravi
Vikas Singh
23
3
0
17 Nov 2015
Provable approximation properties for deep neural networks
Uri Shaham
A. Cloninger
Ronald R. Coifman
19
229
0
24 Sep 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,640
0
03 Jul 2012
1