ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.04123
  4. Cited By
Perturbation theory for Markov chains via Wasserstein distance
v1v2v3 (latest)

Perturbation theory for Markov chains via Wasserstein distance

13 March 2015
Daniel Rudolf
Nikolaus Schweizer
ArXiv (abs)PDFHTML

Papers citing "Perturbation theory for Markov chains via Wasserstein distance"

12 / 12 papers shown
Title
Optimal approximating Markov chains for Bayesian inference
Optimal approximating Markov chains for Bayesian inference
J. Johndrow
Jonathan C. Mattingly
Sayan Mukherjee
David B. Dunson
60
31
0
13 Aug 2015
On Markov chain Monte Carlo methods for tall data
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
71
279
0
11 May 2015
Stability of Noisy Metropolis-Hastings
Stability of Noisy Metropolis-Hastings
F. Medina-Aguayo
Anthony Lee
Gareth O. Roberts
105
41
0
24 Mar 2015
Consistency and fluctuations for stochastic gradient Langevin dynamics
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
75
235
0
01 Sep 2014
Perfect simulation using atomic regeneration with application to
  Sequential Monte Carlo
Perfect simulation using atomic regeneration with application to Sequential Monte Carlo
Anthony Lee
Arnaud Doucet
K. Latuszyñski
94
15
0
22 Jul 2014
Ergodicity of Approximate MCMC Chains with Applications to Large Data
  Sets
Ergodicity of Approximate MCMC Chains with Applications to Large Data Sets
Natesh S. Pillai
Aaron Smith
67
59
0
01 May 2014
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Anoop Korattikara
Yutian Chen
Max Welling
73
244
0
19 Apr 2013
Error bounds for Metropolis-Hastings algorithms applied to perturbations
  of Gaussian measures in high dimensions
Error bounds for Metropolis-Hastings algorithms applied to perturbations of Gaussian measures in high dimensions
A. Eberle
94
41
0
03 Oct 2012
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
S. Ahn
Anoop Korattikara Balan
Max Welling
77
306
0
27 Jun 2012
Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions
Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions
Martin Hairer
Andrew M. Stuart
Sebastian J. Vollmer
100
188
0
06 Dec 2011
Quantitative bounds for Markov chain convergence: Wasserstein and total
  variation distances
Quantitative bounds for Markov chain convergence: Wasserstein and total variation distances
N. Madras
Deniz Sezer
77
54
0
25 Feb 2011
Approximate Bayesian Computational methods
Approximate Bayesian Computational methods
Jean-Michel Marin
Pierre Pudlo
Christian P. Robert
Robin J. Ryder
224
866
0
05 Jan 2011
1