Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.08053
Cited By
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
27 February 2015
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Dual Coordinate Ascent with Adaptive Probabilities"
43 / 43 papers shown
Title
Towards a Better Theoretical Understanding of Independent Subnetwork Training
Egor Shulgin
Peter Richtárik
AI4CE
28
6
0
28 Jun 2023
Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models
Ethan Pickering
T. Sapsis
24
6
0
27 Aug 2022
Stability and Generalization of Stochastic Optimization with Nonconvex and Nonsmooth Problems
Yunwen Lei
11
15
0
14 Jun 2022
SGD with Coordinate Sampling: Theory and Practice
Rémi Leluc
Franccois Portier
21
6
0
25 May 2021
Adam with Bandit Sampling for Deep Learning
Rui Liu
Tianyi Wu
Barzan Mozafari
18
22
0
24 Oct 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark W. Schmidt
Francis R. Bach
Peter Richtárik
19
110
0
02 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks
Weilin Cong
R. Forsati
M. Kandemir
M. Mahdavi
24
84
0
24 Jun 2020
Stochastic batch size for adaptive regularization in deep network optimization
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
ODL
24
6
0
14 Apr 2020
Stochastic Coordinate Minimization with Progressive Precision for Stochastic Convex Optimization
Sudeep Salgia
Qing Zhao
Sattar Vakili
42
2
0
11 Mar 2020
Straggler-Agnostic and Communication-Efficient Distributed Primal-Dual Algorithm for High-Dimensional Data Mining
Zhouyuan Huo
Heng-Chiao Huang
FedML
16
5
0
09 Oct 2019
Randomized Iterative Methods for Linear Systems: Momentum, Inexactness and Gossip
Nicolas Loizou
21
5
0
26 Sep 2019
Nearly Consistent Finite Particle Estimates in Streaming Importance Sampling
Alec Koppel
Amrit Singh Bedi
Brian M. Sadler
Victor Elvira
24
2
0
23 Sep 2019
ADASS: Adaptive Sample Selection for Training Acceleration
Shen-Yi Zhao
Hao Gao
Wu-Jun Li
19
0
0
11 Jun 2019
On Linear Learning with Manycore Processors
Eliza Wszola
Celestine Mendler-Dünner
Martin Jaggi
Markus Püschel
18
1
0
02 May 2019
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
26
44
0
25 Jan 2019
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop
D. Kovalev
Samuel Horváth
Peter Richtárik
30
154
0
24 Jan 2019
Double Adaptive Stochastic Gradient Optimization
Rajaditya Mukherjee
Jin Li
Shicheng Chu
Huamin Wang
ODL
21
0
0
06 Nov 2018
Accelerating Stochastic Gradient Descent Using Antithetic Sampling
Jingchang Liu
Linli Xu
19
2
0
07 Oct 2018
A Fast, Principled Working Set Algorithm for Exploiting Piecewise Linear Structure in Convex Problems
Tyler B. Johnson
Carlos Guestrin
15
5
0
20 Jul 2018
Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields
Rémi Le Priol
Alexandre Piché
Simon Lacoste-Julien
26
5
0
22 Dec 2017
Coordinate Descent with Bandit Sampling
Farnood Salehi
Patrick Thiran
L. E. Celis
26
17
0
08 Dec 2017
Safe Adaptive Importance Sampling
Sebastian U. Stich
Anant Raj
Martin Jaggi
27
53
0
07 Nov 2017
Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems
Celestine Mendler-Dünner
Thomas Parnell
Martin Jaggi
FedML
31
0
0
17 Aug 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
23
38
0
04 Jul 2017
Approximate Steepest Coordinate Descent
Sebastian U. Stich
Anant Raj
Martin Jaggi
18
16
0
26 Jun 2017
IS-ASGD: Accelerating Asynchronous SGD using Importance Sampling
Fei Wang
Jun Ye
Weichen Li
Guihai Chen
27
1
0
26 Jun 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
38
184
0
15 Jun 2017
Stochastic Primal Dual Coordinate Method with Non-Uniform Sampling Based on Optimality Violations
Atsushi Shibagaki
Ichiro Takeuchi
20
5
0
21 Mar 2017
Faster Coordinate Descent via Adaptive Importance Sampling
Dmytro Perekrestenko
V. Cevher
Martin Jaggi
21
42
0
07 Mar 2017
Linear convergence of SDCA in statistical estimation
C. Qu
Huan Xu
43
8
0
26 Jan 2017
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
34
90
0
30 Sep 2016
Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs
A. Osokin
Jean-Baptiste Alayrac
Isabella Lukasewitz
P. Dokania
Simon Lacoste-Julien
25
65
0
30 May 2016
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing
Chenxin Ma
Martin Takáč
28
10
0
16 Mar 2016
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
26
113
0
06 Feb 2016
Reducing Runtime by Recycling Samples
Jialei Wang
Hai Wang
Nathan Srebro
34
3
0
05 Feb 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
44
172
0
30 Dec 2015
Distributed Optimization with Arbitrary Local Solvers
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Michael I. Jordan
Peter Richtárik
Martin Takáč
27
197
0
13 Dec 2015
Dual Free Adaptive Mini-batch SDCA for Empirical Risk Minimization
Xi He
Martin Takávc
17
1
0
22 Oct 2015
Doubly Stochastic Primal-Dual Coordinate Method for Bilinear Saddle-Point Problem
Adams Wei Yu
Qihang Lin
Tianbao Yang
30
7
0
14 Aug 2015
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
Dominik Csiba
Peter Richtárik
33
23
0
07 Jun 2015
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
90
736
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
1