ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.07097
  4. Cited By
On aggregation for heavy-tailed classes

On aggregation for heavy-tailed classes

25 February 2015
S. Mendelson
ArXivPDFHTML

Papers citing "On aggregation for heavy-tailed classes"

12 / 12 papers shown
Title
High-Probability Risk Bounds via Sequential Predictors
High-Probability Risk Bounds via Sequential Predictors
Dirk van der Hoeven
Nikita Zhivotovskiy
Nicolò Cesa-Bianchi
OffRL
36
2
0
15 Aug 2023
On Medians of (Randomized) Pairwise Means
On Medians of (Randomized) Pairwise Means
Pierre Laforgue
Stéphan Clémençon
Patrice Bertail
19
12
0
01 Nov 2022
Learning with little mixing
Learning with little mixing
Ingvar M. Ziemann
Stephen Tu
21
27
0
16 Jun 2022
Posterior concentration and fast convergence rates for generalized
  Bayesian learning
Posterior concentration and fast convergence rates for generalized Bayesian learning
L. Ho
Binh T. Nguyen
Vu C. Dinh
D. M. Nguyen
25
5
0
19 Nov 2021
Distribution-Free Robust Linear Regression
Distribution-Free Robust Linear Regression
Jaouad Mourtada
Tomas Vaskevicius
Nikita Zhivotovskiy
OOD
20
23
0
25 Feb 2021
On Monte-Carlo methods in convex stochastic optimization
On Monte-Carlo methods in convex stochastic optimization
Daniel Bartl
S. Mendelson
25
8
0
19 Jan 2021
Robust Compressed Sensing using Generative Models
Robust Compressed Sensing using Generative Models
A. Jalal
Liu Liu
A. Dimakis
C. Caramanis
21
39
0
16 Jun 2020
Convergence rates of least squares regression estimators with
  heavy-tailed errors
Convergence rates of least squares regression estimators with heavy-tailed errors
Q. Han
J. Wellner
15
44
0
07 Jun 2017
Learning from MOM's principles: Le Cam's approach
Learning from MOM's principles: Le Cam's approach
Lecué Guillaume
Lerasle Matthieu
38
52
0
08 Jan 2017
Fast Rates for General Unbounded Loss Functions: from ERM to Generalized
  Bayes
Fast Rates for General Unbounded Loss Functions: from ERM to Generalized Bayes
Peter Grünwald
Nishant A. Mehta
37
71
0
01 May 2016
Learning without Concentration for General Loss Functions
Learning without Concentration for General Loss Functions
S. Mendelson
60
65
0
13 Oct 2014
Learning without Concentration
Learning without Concentration
S. Mendelson
85
334
0
01 Jan 2014
1