Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03939
Cited By
Polynomial-Chaos-based Kriging
13 February 2015
R. Schöbi
Bruno Sudret
J. Wiart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Polynomial-Chaos-based Kriging"
11 / 11 papers shown
Title
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
33
75
0
07 May 2023
Active learning for structural reliability analysis with multiple limit state functions through variance-enhanced PC-Kriging surrogate models
A. J.Moran
P. G. Morato
P. Rigo
AI4CE
14
0
0
23 Feb 2023
Multielement polynomial chaos Kriging-based metamodelling for Bayesian inference of non-smooth systems
J. C. García-Merino
C. Calvo-Jurado
E. Martínez-Paneda
E. García-Macías
17
10
0
05 Dec 2022
Recent Advances in Uncertainty Quantification Methods for Engineering Problems
Dinesh Kumar
Farid Ahmed
S. Usman
A. Alajo
S. B. Alam
11
7
0
06 Nov 2022
Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees)
Paul Novello
Gaël Poëtte
D. Lugato
S. Peluchon
P. Congedo
AI4CE
19
7
0
27 Sep 2022
A connection between probability, physics and neural networks
Sascha Ranftl
PINN
17
9
0
26 Sep 2022
PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty
Paz Fink Shustin
Shashanka Ubaru
Vasileios Kalantzis
L. Horesh
H. Avron
23
2
0
10 Feb 2022
Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error
Jiangjiang Zhang
Q. Zheng
Dingjiang Chen
Laosheng Wu
L. Zeng
19
36
0
10 Jul 2018
Metamodel-based sensitivity analysis: Polynomial chaos expansions and Gaussian processes
Loic Le Gratiet
S. Marelli
Bruno Sudret
26
157
0
14 Jun 2016
Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation
V. Yaghoubi
S. Marelli
Bruno Sudret
T. Abrahamsson
9
52
0
06 Jun 2016
Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes
F. Bachoc
53
57
0
18 Jan 2013
1