ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03508
  4. Cited By
Adding vs. Averaging in Distributed Primal-Dual Optimization

Adding vs. Averaging in Distributed Primal-Dual Optimization

12 February 2015
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
    FedML
ArXivPDFHTML

Papers citing "Adding vs. Averaging in Distributed Primal-Dual Optimization"

29 / 29 papers shown
Title
On ADMM in Heterogeneous Federated Learning: Personalization,
  Robustness, and Fairness
On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness
Shengkun Zhu
Jinshan Zeng
Sheng Wang
Yuan Sun
Xiaodong Li
Yuan Yao
Zhiyong Peng
52
0
0
23 Jul 2024
Heterogeneous Federated Learning: State-of-the-art and Research
  Challenges
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
39
244
0
20 Jul 2023
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
Yi-Rui Yang
Chang-Wei Shi
Wu-Jun Li
FedML
AAML
21
0
0
23 May 2023
Gradient-Leakage Resilient Federated Learning
Gradient-Leakage Resilient Federated Learning
Wenqi Wei
Ling Liu
Yanzhao Wu
Gong Su
Arun Iyengar
FedML
19
81
0
02 Jul 2021
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural
  Networks
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks
Chaoyang He
Emir Ceyani
Keshav Balasubramanian
M. Annavaram
Salman Avestimehr
FedML
25
50
0
04 Jun 2021
Towards Demystifying Serverless Machine Learning Training
Towards Demystifying Serverless Machine Learning Training
Jiawei Jiang
Shaoduo Gan
Yue Liu
Fanlin Wang
Gustavo Alonso
Ana Klimovic
Ankit Singla
Wentao Wu
Ce Zhang
19
121
0
17 May 2021
Toward Multiple Federated Learning Services Resource Sharing in Mobile
  Edge Networks
Toward Multiple Federated Learning Services Resource Sharing in Mobile Edge Networks
Minh N. H. Nguyen
N. H. Tran
Y. Tun
Zhu Han
Choong Seon Hong
FedML
24
49
0
25 Nov 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
Buffered Asynchronous SGD for Byzantine Learning
Buffered Asynchronous SGD for Byzantine Learning
Yi-Rui Yang
Wu-Jun Li
FedML
29
5
0
02 Mar 2020
Faster On-Device Training Using New Federated Momentum Algorithm
Faster On-Device Training Using New Federated Momentum Algorithm
Zhouyuan Huo
Qian Yang
Bin Gu
Heng-Chiao Huang
FedML
22
47
0
06 Feb 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal
  Sampling
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
35
20
0
25 Oct 2019
Variational Federated Multi-Task Learning
Variational Federated Multi-Task Learning
Luca Corinzia
Ami Beuret
J. M. Buhmann
FedML
27
159
0
14 Jun 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to
  Fix it
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
Gradient-Leaks: Understanding and Controlling Deanonymization in
  Federated Learning
Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning
Tribhuvanesh Orekondy
Seong Joon Oh
Yang Zhang
Bernt Schiele
Mario Fritz
PICV
FedML
357
37
0
15 May 2018
Improved asynchronous parallel optimization analysis for stochastic
  incremental methods
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
16
70
0
11 Jan 2018
GIANT: Globally Improved Approximate Newton Method for Distributed
  Optimization
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
33
127
0
11 Sep 2017
Federated Multi-Task Learning
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
15
1,776
0
30 May 2017
Distributed Dual Coordinate Ascent in General Tree Networks and
  Communication Network Effect on Synchronous Machine Learning
Distributed Dual Coordinate Ascent in General Tree Networks and Communication Network Effect on Synchronous Machine Learning
Myung Cho
Lifeng Lai
Weiyu Xu
14
1
0
14 Mar 2017
Optimization for Large-Scale Machine Learning with Distributed Features
  and Observations
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
30
13
0
31 Oct 2016
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
36
4,588
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
51
1,876
0
08 Oct 2016
AIDE: Fast and Communication Efficient Distributed Optimization
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
16
150
0
24 Aug 2016
ASAGA: Asynchronous Parallel SAGA
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
AI4TS
23
101
0
15 Jun 2016
A General Distributed Dual Coordinate Optimization Framework for
  Regularized Loss Minimization
A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization
Shun Zheng
Jialei Wang
Fen Xia
Wenyuan Xu
Tong Zhang
18
22
0
13 Apr 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
24
16,996
0
17 Feb 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
16
16
0
30 Jan 2016
L1-Regularized Distributed Optimization: A Communication-Efficient
  Primal-Dual Framework
L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework
Virginia Smith
Simone Forte
Michael I. Jordan
Martin Jaggi
28
28
0
13 Dec 2015
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
31
37
0
08 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
25
273
0
16 Apr 2015
1