Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03508
Cited By
Adding vs. Averaging in Distributed Primal-Dual Optimization
12 February 2015
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adding vs. Averaging in Distributed Primal-Dual Optimization"
29 / 29 papers shown
Title
On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness
Shengkun Zhu
Jinshan Zeng
Sheng Wang
Yuan Sun
Xiaodong Li
Yuan Yao
Zhiyong Peng
52
0
0
23 Jul 2024
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
39
244
0
20 Jul 2023
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
Yi-Rui Yang
Chang-Wei Shi
Wu-Jun Li
FedML
AAML
21
0
0
23 May 2023
Gradient-Leakage Resilient Federated Learning
Wenqi Wei
Ling Liu
Yanzhao Wu
Gong Su
Arun Iyengar
FedML
19
81
0
02 Jul 2021
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks
Chaoyang He
Emir Ceyani
Keshav Balasubramanian
M. Annavaram
Salman Avestimehr
FedML
25
50
0
04 Jun 2021
Towards Demystifying Serverless Machine Learning Training
Jiawei Jiang
Shaoduo Gan
Yue Liu
Fanlin Wang
Gustavo Alonso
Ana Klimovic
Ankit Singla
Wentao Wu
Ce Zhang
19
121
0
17 May 2021
Toward Multiple Federated Learning Services Resource Sharing in Mobile Edge Networks
Minh N. H. Nguyen
N. H. Tran
Y. Tun
Zhu Han
Choong Seon Hong
FedML
24
49
0
25 Nov 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
Buffered Asynchronous SGD for Byzantine Learning
Yi-Rui Yang
Wu-Jun Li
FedML
29
5
0
02 Mar 2020
Faster On-Device Training Using New Federated Momentum Algorithm
Zhouyuan Huo
Qian Yang
Bin Gu
Heng-Chiao Huang
FedML
22
47
0
06 Feb 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
35
20
0
25 Oct 2019
Variational Federated Multi-Task Learning
Luca Corinzia
Ami Beuret
J. M. Buhmann
FedML
27
159
0
14 Jun 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning
Tribhuvanesh Orekondy
Seong Joon Oh
Yang Zhang
Bernt Schiele
Mario Fritz
PICV
FedML
357
37
0
15 May 2018
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
16
70
0
11 Jan 2018
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
33
127
0
11 Sep 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
15
1,776
0
30 May 2017
Distributed Dual Coordinate Ascent in General Tree Networks and Communication Network Effect on Synchronous Machine Learning
Myung Cho
Lifeng Lai
Weiyu Xu
14
1
0
14 Mar 2017
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
30
13
0
31 Oct 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
36
4,588
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
51
1,876
0
08 Oct 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
16
150
0
24 Aug 2016
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
AI4TS
23
101
0
15 Jun 2016
A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization
Shun Zheng
Jialei Wang
Fen Xia
Wenyuan Xu
Tong Zhang
18
22
0
13 Apr 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
24
16,996
0
17 Feb 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
16
16
0
30 Jan 2016
L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework
Virginia Smith
Simone Forte
Michael I. Jordan
Martin Jaggi
28
28
0
13 Dec 2015
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
31
37
0
08 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
25
273
0
16 Apr 2015
1