ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03167
  4. Cited By
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
v1v2v3 (latest)

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

11 February 2015
Sergey Ioffe
Christian Szegedy
    OOD
ArXiv (abs)PDFHTML

Papers citing "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

50 / 11,316 papers shown
Title
Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer
  through Optimal Transport
Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport
E. Risser
OOD
47
5
0
28 Oct 2020
Hybrid Backpropagation Parallel Reservoir Networks
Hybrid Backpropagation Parallel Reservoir Networks
Matthew Evanusa
Snehesh Shrestha
M. Girvan
Cornelia Fermuller
Yiannis Aloimonos
AI4TS
72
0
0
27 Oct 2020
Improving seasonal forecast using probabilistic deep learning
Improving seasonal forecast using probabilistic deep learning
B. Pan
G. Anderson
André Goncalves
Donald D. Lucas
C. Bonfils
Jiwoo Lee
BDLAI4Cl
120
33
0
27 Oct 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
151
82
0
27 Oct 2020
Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer
  Proxies
Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies
Yuehua Zhu
Muli Yang
Cheng Deng
Wei Liu
105
56
0
26 Oct 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using
  Structured Response Jacobians
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
73
24
0
26 Oct 2020
Reducing the Computational Cost of Deep Generative Models with Binary
  Neural Networks
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDaMQAI4CE
143
9
0
26 Oct 2020
Neuron Merging: Compensating for Pruned Neurons
Neuron Merging: Compensating for Pruned Neurons
Woojeong Kim
Suhyun Kim
Mincheol Park
Geonseok Jeon
76
33
0
25 Oct 2020
XLVIN: eXecuted Latent Value Iteration Nets
XLVIN: eXecuted Latent Value Iteration Nets
Andreea Deac
Petar Velivcković
Ognjen Milinković
Pierre-Luc Bacon
Jian Tang
Mladen Nikolic
71
19
0
25 Oct 2020
Deep neural network for solving differential equations motivated by
  Legendre-Galerkin approximation
Deep neural network for solving differential equations motivated by Legendre-Galerkin approximation
Bryce Chudomelka
Youngjoon Hong
Hyunwoo J. Kim
Jinyoung Park
76
7
0
24 Oct 2020
Deep Denoising For Scientific Discovery: A Case Study In Electron
  Microscopy
Deep Denoising For Scientific Discovery: A Case Study In Electron Microscopy
S. Mohan
R. Manzorro
Joshua L. Vincent
Binh Tang
D. Y. Sheth
Eero P. Simoncelli
David S. Matteson
Peter A Crozier
C. Fernandez‐Granda
96
29
0
24 Oct 2020
PEP: Parameter Ensembling by Perturbation
PEP: Parameter Ensembling by Perturbation
Alireza Mehrtash
Purang Abolmaesumi
Polina Golland
Tina Kapur
Demian Wassermann
W. Wells
70
10
0
24 Oct 2020
ResNet or DenseNet? Introducing Dense Shortcuts to ResNet
ResNet or DenseNet? Introducing Dense Shortcuts to ResNet
Chaoning Zhang
Philipp Benz
Dawit Mureja Argaw
Seokju Lee
Junsik Kim
François Rameau
Jean-Charles Bazin
In So Kweon
92
115
0
23 Oct 2020
Progressive Training of Multi-level Wavelet Residual Networks for Image
  Denoising
Progressive Training of Multi-level Wavelet Residual Networks for Image Denoising
Yali Peng
Yue Cao
Shigang Liu
Jian Yang
W. Zuo
69
11
0
23 Oct 2020
Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement
  Learning
Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning
Cong Zhang
Wen Song
Zhiguang Cao
Jie Zhang
Puay Siew Tan
Chi Xu
143
320
0
23 Oct 2020
DualNet: Locate Then Detect Effective Payload with Deep Attention
  Network
DualNet: Locate Then Detect Effective Payload with Deep Attention Network
Shiyi Yang
Peilun Wu
Hui Guo
45
10
0
23 Oct 2020
AdaCrowd: Unlabeled Scene Adaptation for Crowd Counting
AdaCrowd: Unlabeled Scene Adaptation for Crowd Counting
Mahesh Kumar Krishna Reddy
Mrigank Rochan
Yiwei Lu
Yang Wang
84
27
0
23 Oct 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
828
41,948
0
22 Oct 2020
On Resource-Efficient Bayesian Network Classifiers and Deep Neural
  Networks
On Resource-Efficient Bayesian Network Classifiers and Deep Neural Networks
Wolfgang Roth
Günther Schindler
Holger Fröning
Franz Pernkopf
BDLMQ
25
0
0
22 Oct 2020
Identifying Learning Rules From Neural Network Observables
Identifying Learning Rules From Neural Network Observables
Aran Nayebi
S. Srivastava
Surya Ganguli
Daniel L. K. Yamins
51
22
0
22 Oct 2020
Classification with Rejection Based on Cost-sensitive Classification
Classification with Rejection Based on Cost-sensitive Classification
Nontawat Charoenphakdee
Zhenghang Cui
Yivan Zhang
Masashi Sugiyama
179
67
0
22 Oct 2020
CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectrogram
  Conversion
CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectrogram Conversion
Takuhiro Kaneko
Hirokazu Kameoka
Kou Tanaka
Nobukatsu Hojo
89
82
0
22 Oct 2020
LaSAFT: Latent Source Attentive Frequency Transformation for Conditioned
  Source Separation
LaSAFT: Latent Source Attentive Frequency Transformation for Conditioned Source Separation
Woosung Choi
Minseok Kim
Jaehwa Chung
Soonyoung Jung
106
33
0
22 Oct 2020
On the Power of Deep but Naive Partial Label Learning
On the Power of Deep but Naive Partial Label Learning
Junghoon Seo
Joon Suk Huh
77
12
0
22 Oct 2020
Learning Dual Semantic Relations with Graph Attention for Image-Text
  Matching
Learning Dual Semantic Relations with Graph Attention for Image-Text Matching
Keyu Wen
Xiaodong Gu
Qingrong Cheng
89
97
0
22 Oct 2020
TLGAN: document Text Localization using Generative Adversarial Nets
TLGAN: document Text Localization using Generative Adversarial Nets
Dongyoun Kim
M. Kwak
Eunji Won
Sejung Shin
Jeongyeon Nam
GAN
53
0
0
22 Oct 2020
Adaptive Gradient Method with Resilience and Momentum
Adaptive Gradient Method with Resilience and Momentum
Jie Liu
Chen Lin
Chuming Li
Lu Sheng
Ming Sun
Junjie Yan
Wanli Ouyang
ODL
26
0
0
21 Oct 2020
Complex data labeling with deep learning methods: Lessons from fisheries
  acoustics
Complex data labeling with deep learning methods: Lessons from fisheries acoustics
J. M. Sarr
T. Brochier
P. Brehmer
Y. Perrot
A. Bah
Abdoulaye Sarré
M. A. Jeyid
M. Sidibeh
S. E. Ayoubi
53
13
0
21 Oct 2020
Improving Generalization in Reinforcement Learning with Mixture
  Regularization
Improving Generalization in Reinforcement Learning with Mixture Regularization
Kaixin Wang
Bingyi Kang
Jie Shao
Jiashi Feng
188
120
0
21 Oct 2020
Learning to Embed Categorical Features without Embedding Tables for
  Recommendation
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTDCMLDML
110
72
0
21 Oct 2020
Dense Dual-Path Network for Real-time Semantic Segmentation
Dense Dual-Path Network for Real-time Semantic Segmentation
Xinneng Yang
Yan Wu
Junqiao Zhao
Feilin Liu
SSeg
86
12
0
21 Oct 2020
SCOP: Scientific Control for Reliable Neural Network Pruning
SCOP: Scientific Control for Reliable Neural Network Pruning
Yehui Tang
Yunhe Wang
Yixing Xu
Dacheng Tao
Chunjing Xu
Chao Xu
Chang Xu
AAML
131
166
0
21 Oct 2020
Where Is the Normative Proof? Assumptions and Contradictions in ML
  Fairness Research
Where Is the Normative Proof? Assumptions and Contradictions in ML Fairness Research
A. Feder Cooper
81
7
0
20 Oct 2020
BYOL works even without batch statistics
BYOL works even without batch statistics
Pierre Harvey Richemond
Jean-Bastien Grill
Florent Altché
Corentin Tallec
Florian Strub
...
Samuel L. Smith
Soham De
Razvan Pascanu
Bilal Piot
Michal Valko
SSL
323
115
0
20 Oct 2020
Depth Guided Adaptive Meta-Fusion Network for Few-shot Video Recognition
Depth Guided Adaptive Meta-Fusion Network for Few-shot Video Recognition
Yuqian Fu
Li Zhang
Junke Wang
Yanwei Fu
Yu-Gang Jiang
91
99
0
20 Oct 2020
Small-Footprint Keyword Spotting with Multi-Scale Temporal Convolution
Small-Footprint Keyword Spotting with Multi-Scale Temporal Convolution
Ximin Li
Xiaodong Wei
Xiaowei Qin
100
38
0
20 Oct 2020
Smooth activations and reproducibility in deep networks
Smooth activations and reproducibility in deep networks
G. Shamir
Dong Lin
Lorenzo Coviello
68
23
0
20 Oct 2020
Hierarchical Paired Channel Fusion Network for Street Scene Change
  Detection
Hierarchical Paired Channel Fusion Network for Street Scene Change Detection
Yinjie Lei
Duo Peng
Pingping Zhang
Qiuhong Ke
Haifeng Li
78
75
0
19 Oct 2020
Multi-Window Data Augmentation Approach for Speech Emotion Recognition
Multi-Window Data Augmentation Approach for Speech Emotion Recognition
Sarala Padi
Tianyi Zhou
Ram D.Sriram
84
11
0
19 Oct 2020
CLAR: Contrastive Learning of Auditory Representations
CLAR: Contrastive Learning of Auditory Representations
Haider Al-Tahan
Y. Mohsenzadeh
SSL
198
56
0
19 Oct 2020
FTBNN: Rethinking Non-linearity for 1-bit CNNs and Going Beyond
FTBNN: Rethinking Non-linearity for 1-bit CNNs and Going Beyond
Z. Su
Linpu Fang
Deke Guo
Duwen Hu
M. Pietikäinen
Li Liu
MQ
81
3
0
19 Oct 2020
MimicNorm: Weight Mean and Last BN Layer Mimic the Dynamic of Batch
  Normalization
MimicNorm: Weight Mean and Last BN Layer Mimic the Dynamic of Batch Normalization
Wen Fei
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
53
1
0
19 Oct 2020
Auto-Encoding Variational Bayes for Inferring Topics and Visualization
Auto-Encoding Variational Bayes for Inferring Topics and Visualization
D. Pham
Tuan M. V. Le
BDL
27
13
0
19 Oct 2020
Permutationless Many-Jet Event Reconstruction with Symmetry Preserving
  Attention Networks
Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks
M. Fenton
Alexander Shmakov
Ta-Wei Ho
S. Hsu
D. Whiteson
Pierre Baldi
96
39
0
19 Oct 2020
D2RL: Deep Dense Architectures in Reinforcement Learning
D2RL: Deep Dense Architectures in Reinforcement Learning
Samarth Sinha
Homanga Bharadhwaj
A. Srinivas
Animesh Garg
OffRLAI4CE
126
56
0
19 Oct 2020
Explaining and Improving Model Behavior with k Nearest Neighbor
  Representations
Explaining and Improving Model Behavior with k Nearest Neighbor Representations
Nazneen Rajani
Ben Krause
Wengpeng Yin
Tong Niu
R. Socher
Caiming Xiong
FAtt
72
34
0
18 Oct 2020
FPGAs-as-a-Service Toolkit (FaaST)
FPGAs-as-a-Service Toolkit (FaaST)
D. Rankin
J. Krupa
Philip C. Harris
M. Acosta Flechas
B. Holzman
...
Kelvin Lin
Yu Lou
Ta-Wei Ho
Javier Mauricio Duarte
Miaoyuan Liu
73
23
0
16 Oct 2020
Why Are Convolutional Nets More Sample-Efficient than Fully-Connected
  Nets?
Why Are Convolutional Nets More Sample-Efficient than Fully-Connected Nets?
Zhiyuan Li
Yi Zhang
Sanjeev Arora
BDLMLT
92
39
0
16 Oct 2020
Learning Monocular Dense Depth from Events
Learning Monocular Dense Depth from Events
Javier Hidalgo-Carrió
Daniel Gehrig
Davide Scaramuzza
MDE
114
117
0
16 Oct 2020
Uncertainty-Aware Deep Ensembles for Reliable and Explainable
  Predictions of Clinical Time Series
Uncertainty-Aware Deep Ensembles for Reliable and Explainable Predictions of Clinical Time Series
Kristoffer Wickstrøm
Karl Øyvind Mikalsen
Michael C. Kampffmeyer
A. Revhaug
Robert Jenssen
AI4TS
67
34
0
16 Oct 2020
Previous
123...111112113...225226227
Next