ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.05892
65
108
v1v2v3v4v5 (latest)

Capacity-achieving Sparse Superposition Codes via Approximate Message Passing Decoding

23 January 2015
Cynthia Rush
A. Greig
R. Venkataramanan
ArXiv (abs)PDFHTML
Abstract

Sparse superposition codes were recently introduced by Barron and Joseph for reliable communication over the AWGN channel at rates approaching the channel capacity. The codebook is defined in terms of a Gaussian design matrix, and codewords are sparse linear combinations of columns of the matrix. In this paper, we propose an approximate message passing decoder for sparse superposition codes, whose decoding complexity scales linearly with the size of the design matrix. The performance of the decoder is rigorously analyzed and it is shown to asymptotically achieve the AWGN capacity with an appropriate power allocation. Simulation results are provided to demonstrate the performance of the decoder at finite blocklengths. We introduce a power allocation scheme to improve the empirical performance, and demonstrate how the decoding complexity can be significantly reduced by using Hadamard design matrices.

View on arXiv
Comments on this paper